Effective connectivity analysis of fMRI time-series based on Granger causality and complex network

Author(s):  
Zhuqing Jiao ◽  
Ling Zou ◽  
Nong Qian ◽  
Zhenghua Ma
2020 ◽  
Vol 23 (2) ◽  
pp. 121-124
Author(s):  
N. W. Falasca ◽  
R. Franciotti

Granger causality (G-causality) has emerged as a useful tool to investigate the influence that one system can exert over another system, but challenges remain when applying it to biological data. Specifically, it is not clear if G-causality can distinguish between direct and indirect influences. In this study time domain G-causality connectivity analysis was performed on simulated electroencephalographic cerebral signals. Conditional multivariate autoregressive model was applied to 19 virtual time series (nodes) to identify the effects of direct and indirect links while varying one of the following variables: the length of the time series, the lags between interacting nodes, the connection strength of the links, and the noise. Simulated data revealed that weak indirect influences are not identified by Gcausality analysis when applied on covariance stationary, non-correlated electrophysiological time series.


2020 ◽  
Vol 34 (04) ◽  
pp. 4852-4859
Author(s):  
Jinduo Liu ◽  
Junzhong Ji ◽  
Guangxu Xun ◽  
Liuyi Yao ◽  
Mengdi Huai ◽  
...  

Inferring effective connectivity between different brain regions from functional magnetic resonance imaging (fMRI) data is an important advanced study in neuroinformatics in recent years. However, current methods have limited usage in effective connectivity studies due to the high noise and small sample size of fMRI data. In this paper, we propose a novel framework for inferring effective connectivity based on generative adversarial networks (GAN), named as EC-GAN. The proposed framework EC-GAN infers effective connectivity via an adversarial process, in which we simultaneously train two models: a generator and a discriminator. The generator consists of a set of effective connectivity generators based on structural equation models which can generate the fMRI time series of each brain region via effective connectivity. Meanwhile, the discriminator is employed to distinguish between the joint distributions of the real and generated fMRI time series. Experimental results on simulated data show that EC-GAN can better infer effective connectivity compared to other state-of-the-art methods. The real-world experiments indicate that EC-GAN can provide a new and reliable perspective analyzing the effective connectivity of fMRI data.


2017 ◽  
Author(s):  
Dror Cohen ◽  
Naotsugu Tsuchiya

AbstractWhen analyzing neural data it is important to consider the limitations of the particular experimental setup. An enduring issue in the context of electrophysiology is the presence of common signals. For example a non-silent reference electrode adds a common signal across all recorded data and this adversely affects functional and effective connectivity analysis. To address the common signals problem, a number of methods have been proposed, but relatively few detailed investigations have been carried out. We address this gap by analyzing local field potentials recorded from the small brains of fruit flies. We conduct our analysis following a solid mathematical framework that allows us to make precise predictions regarding the nature of the common signals. We demonstrate how a framework that jointly analyzes power, coherence and quantities from the Granger causality framework allows us to detect and assess the nature of the common signals. Our analysis revealed substantial common signals in our data, in part due to a non-silent reference electrode. We further show that subtracting spatially adjacent signals (bipolar rereferencing) largely removes the effects of the common signals. However, in some special cases this operation itself introduces a common signal. The mathematical framework and analysis pipeline we present can readily be used by others to detect and assess the nature of the common signals in their data, thereby reducing the chance of misinterpreting the results of functional and effective connectivity analysis.


Author(s):  
Davide Provenzano ◽  
Rodolfo Baggio

AbstractIn this study, we characterized the dynamics and analyzed the degree of synchronization of the time series of daily closing prices and volumes in US$ of three cryptocurrencies, Bitcoin, Ethereum, and Litecoin, over the period September 1,2015–March 31, 2020. Time series were first mapped into a complex network by the horizontal visibility algorithm in order to revel the structure of their temporal characters and dynamics. Then, the synchrony of the time series was investigated to determine the possibility that the cryptocurrencies under study co-bubble simultaneously. Findings reveal similar complex structures for the three virtual currencies in terms of number and internal composition of communities. To the aim of our analysis, such result proves that price and volume dynamics of the cryptocurrencies were characterized by cyclical patterns of similar wavelength and amplitude over the time period considered. Yet, the value of the slope parameter associated with the exponential distributions fitted to the data suggests a higher stability and predictability for Bitcoin and Litecoin than for Ethereum. The study of synchrony between the time series investigated displayed a different degree of synchronization between the three cryptocurrencies before and after a collapse event. These results could be of interest for investors who might prefer to switch from one cryptocurrency to another to exploit the potential opportunities of profit generated by the dynamics of price and volumes in the market of virtual currencies.


Sign in / Sign up

Export Citation Format

Share Document