scholarly journals LSTM Classification of sEMG Signals For Individual Finger Movements Using Low Cost Wearable Sensor

Author(s):  
Christopher Millar ◽  
Nazmul Siddique ◽  
Emmett Kerr

2020 ◽  
Vol 58 ◽  
pp. 101834 ◽  
Author(s):  
Maria V. Arteaga ◽  
Jenny C. Castiblanco ◽  
Ivan F. Mondragon ◽  
Julian D. Colorado ◽  
Catalina Alvarado-Rojas


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2850 ◽  
Author(s):  
Giorgio Biagetti ◽  
Paolo Crippa ◽  
Laura Falaschetti ◽  
Claudio Turchetti

The human activity diarization using wearable technologies is one of the most important supporting techniques for ambient assisted living, sport and fitness activities, healthcare of elderly people. The activity diarization is performed in two steps: the acquisition of body signals and the classification of activities being performed. This paper presents a technique for data fusion at classifier level of accelerometer and sEMG signals acquired by using a low-cost wearable wireless system for monitoring the human activity when performing sport and fitness activities, as well as in healthcare applications. To demonstrate the capability of the system of diarizing the user’s activities, data recorded from a few subjects were used to train and test the automatic classifier for recognizing the type of exercise being performed.



2021 ◽  
Vol 14 (5) ◽  
pp. 440
Author(s):  
Eirini Siozou ◽  
Vasilios Sakkas ◽  
Nikolaos Kourkoumelis

A new methodology, based on Fourier transform infrared spectroscopy equipped with an attenuated total reflectance accessory (ATR FT-IR), was developed for the determination of diclofenac sodium (DS) in dispersed commercially available tablets using chemometric tools such as partial least squares (PLS) coupled with discriminant analysis (PLS-DA). The results of PLS-DA depicted a perfect classification of the tablets into three different groups based on their DS concentrations, while the developed model with PLS had a sufficiently low root mean square error (RMSE) for the prediction of the samples’ concentration (~5%) and therefore can be practically used for any tablet with an unknown concentration of DS. Comparison with ultraviolet/visible (UV/Vis) spectrophotometry as the reference method revealed no significant difference between the two methods. The proposed methodology exhibited satisfactory results in terms of both accuracy and precision while being rapid, simple and of low cost.



Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 196
Author(s):  
Araz Soltani Nazarloo ◽  
Vali Rasooli Sharabiani ◽  
Yousef Abbaspour Gilandeh ◽  
Ebrahim Taghinezhad ◽  
Mariusz Szymanek ◽  
...  

The purpose of this work was to investigate the detection of the pesticide residual (profenofos) in tomatoes by using visible/near-infrared spectroscopy. Therefore, the experiments were performed on 180 tomato samples with different percentages of profenofos pesticide (higher and lower values than the maximum residual limit (MRL)) as compared to the control (no pesticide). VIS/near infrared (NIR) spectral data from pesticide solution and non-pesticide tomato samples (used as control treatment) impregnated with different concentrations of pesticide in the range of 400 to 1050 nm were recorded by a spectrometer. For classification of tomatoes with pesticide content at lower and higher levels of MRL as healthy and unhealthy samples, we used different spectral pre-processing methods with partial least squares discriminant analysis (PLS-DA) models. The Smoothing Moving Average pre-processing method with the standard error of cross validation (SECV) = 4.2767 was selected as the best model for this study. In addition, in the calibration and prediction sets, the percentages of total correctly classified samples were 90 and 91.66%, respectively. Therefore, it can be concluded that reflective spectroscopy (VIS/NIR) can be used as a non-destructive, low-cost, and rapid technique to control the health of tomatoes impregnated with profenofos pesticide.



2021 ◽  
pp. 108199
Author(s):  
Pau Arce ◽  
David Salvo ◽  
Gema Piñero ◽  
Alberto Gonzalez


Sign in / Sign up

Export Citation Format

Share Document