scholarly journals Feasibility of Using VIS/NIR Spectroscopy and Multivariate Analysis for Pesticide Residue Detection in Tomatoes

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 196
Author(s):  
Araz Soltani Nazarloo ◽  
Vali Rasooli Sharabiani ◽  
Yousef Abbaspour Gilandeh ◽  
Ebrahim Taghinezhad ◽  
Mariusz Szymanek ◽  
...  

The purpose of this work was to investigate the detection of the pesticide residual (profenofos) in tomatoes by using visible/near-infrared spectroscopy. Therefore, the experiments were performed on 180 tomato samples with different percentages of profenofos pesticide (higher and lower values than the maximum residual limit (MRL)) as compared to the control (no pesticide). VIS/near infrared (NIR) spectral data from pesticide solution and non-pesticide tomato samples (used as control treatment) impregnated with different concentrations of pesticide in the range of 400 to 1050 nm were recorded by a spectrometer. For classification of tomatoes with pesticide content at lower and higher levels of MRL as healthy and unhealthy samples, we used different spectral pre-processing methods with partial least squares discriminant analysis (PLS-DA) models. The Smoothing Moving Average pre-processing method with the standard error of cross validation (SECV) = 4.2767 was selected as the best model for this study. In addition, in the calibration and prediction sets, the percentages of total correctly classified samples were 90 and 91.66%, respectively. Therefore, it can be concluded that reflective spectroscopy (VIS/NIR) can be used as a non-destructive, low-cost, and rapid technique to control the health of tomatoes impregnated with profenofos pesticide.

2021 ◽  
Vol 12 ◽  
Author(s):  
Irsa Ejaz ◽  
Siyang He ◽  
Wei Li ◽  
Naiyue Hu ◽  
Chaochen Tang ◽  
...  

Near-infrared spectroscopy (NIR) is a non-destructive, fast, and low-cost method to measure the grain quality of different cereals. However, the feasibility for determining the critical biochemicals, related to the classifications for food, feed, and fuel products are not adequately investigated. Fourier-transform (FT) NIR was applied in this study to determine the eight biochemicals in four types of sorghum samples: hulled grain flours, hull-less grain flours, whole grains, and grain flours. A total of 20 hybrids of sorghum grains were selected from the two locations in China. Followed by FT-NIR spectral and wet-chemically measured biochemical data, partial least squares regression (PLSR) was used to construct the prediction models. The results showed that sorghum grain morphology and sample format affected the prediction of biochemicals. Using NIR data of grain flours generally improved the prediction compared with the use of NIR data of whole grains. In addition, using the spectra of whole grains enabled comparable predictions, which are recommended when a non-destructive and rapid analysis is required. Compared with the hulled grain flours, hull-less grain flours allowed for improved predictions for tannin, cellulose, and hemicellulose using NIR data. This study aimed to provide a reference for the evaluation of sorghum grain biochemicals for food, feed, and fuel without destruction and complex chemical analysis.


Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 64 ◽  
Author(s):  
Noboru Ito ◽  
Naoya Okubo ◽  
Yohei Kurata

The further use of wood resources is expected in an environmentally conscious society. Added-value, such as durability enhancement and preservation by painting, are needed to expand the applicability of wood. Assessment of wood properties such as surface and coat adhesion can be made by studying perviousness to liquid oils, with the aim of developing wood products that deter insects and are weather-resistant; hence, discriminant analysis of oil type is important. Near-infrared (NIR) spectroscopy is a powerful tool for nondestructive characterization of organic materials and has been widely used in many industries. Here, NIR detection of oil on wood surfaces is applied for the distinguishing of three different types of oil (hereafter, “Oil_1”, “Oil_2” and “Oil_3”) via soft independent modeling of class analogy (SIMCA). Oil_1 was antiseptic vehicle or cutting oil. Oil_2 was used as a motor oil for an oil pressure machine. Oil_3 was plant-derived oil. Two types of wood that are commonly used in Japanese construction (Cryptomeria japonica and Chamaecyparis obtuse) were analyzed after applying oil. The NIR spectra measured after the oil was applied were greater in the ranges 1700–1800 nm and 2300–2500 nm than spectra for the bare wood sample. As SIMCA analyses were performed by using spectral data that included the moving average, baseline correction and second derivatives, good results were obtained for Oil_3 for both wood samples. However, the correct classification percentages were low for Oil_1, and the percentage of samples classified within several categories was high. If the components are very different, such as those for Oil_3, NIRS can be a powerful non-destructive method for identifying oil in the context of wood products testing.


Author(s):  
Kim Seng Chia ◽  
Yit Peng Tan

<span>Near infrared (NIR) spectroscopic technology has been getting more attention in various fields. The development of a low cost NIR spectroscopy is crucial to reduce the financial barriers so that more NIR spectroscopic applications will be investigated and developed by means of the NIR spectroscopic technology. This study proposes an alternative to measure shortwave NIR spectrum using one collimating lens, two slits, one NIR transmission grating, one linear array sensor, and one microcontroller. Five high precision narrow bands NIR light emitting diodes (LEDs) were used to calibrate the proposed spectroscopy. The effects of the proposed two slits design, the distance between the grating and linear array sensor, and three different regression models were investigated. The accuracy of the proposed design was cross-validated using leave-one-out cross-validation. Results show that the proposed two slits design was able to eliminate unwanted signals substantially, and the cross-validation was able to estimate the best model with root mean squared error of cross-validation of 3.8932nm. Findings indicate that the cross-validation approach is a good approach to estimate the final model without over-fitting, and the proposed shortwave NIR spectroscopy was able to estimate the peak value of the acquired spectrum from NIR LEDs with RMSE of 1.1616nm.</span>


2002 ◽  
Vol 10 (3) ◽  
pp. 203-214 ◽  
Author(s):  
N. Gierlinger ◽  
M. Schwanninger ◽  
B. Hinterstoisser ◽  
R. Wimmer

The feasibility of Fourier transform near infrared (FT-NIR) spectroscopy to rapidly determine extractive and phenolic content in heartwood of larch trees ( Larix decidua MILL., L. leptolepis (LAMB.) CARR. and the hybrid L. x eurolepis) was investigated. FT-NIR spectra were collected from wood powder and solid wood using a fibre-optic probe. Partial Least Squares (PLS) regression analyses were carried out describing relationships between the data sets of wet laboratory chemical data and the FT-NIR spectra. Besides cross and test set validation the established models were subjected to a further evaluation step by means of additional wood samples with unknown extractive content. Extractive and phenol contents of these additional samples were predicted and outliers detected through Mahalanobis distance calculations. Models based on the whole spectral range and without data pre-processing performed well in cross-validation and test set validation, but failed in the evaluation test, which is based on spectral outlier detection. But selection of data pre-processing methods and manual as well as automatic restriction of wavenumber ranges considerably improved the model predictability. High coefficients of determination ( R2) and low root mean square errors of cross-validation ( RMSECV) were obtained for hot water extractives ( R2 = 0.96, RMSECV = 0.86%, range = 4.9–20.4%), acetone extractives ( R2 = 0.86, RMSECV = 0.32%, range = 0.8–3.6%) and phenolic substances ( R2 = 0.98, RMSECV = 0.21%, range = 0.7–4.9%) from wood powder. The models derived from wood powder spectra were more precise than those obtained from solid wood strips. Overall, NIR spectroscopy has proven to be an easy to facilitate, reliable, accurate and fast method for non-destructive wood extractive determination.


2016 ◽  
Vol 24 (6) ◽  
pp. 517-528 ◽  
Author(s):  
Susanna Pulkka ◽  
Vincent Segura ◽  
Anni Harju ◽  
Tarja Tapanila ◽  
Johanna Tanner ◽  
...  

High-throughput and non-destructive methods for quantifying the content of the stilbene compounds of Scots pine ( Pinus sylvestris L.) heartwood are needed in the breeding for decay resistance of heartwood timber. In this study, near infrared (NIR) spectroscopy calibrations were developed for a large collection of solid heartwood increment core samples in order to predict the amount of the stilbene pinosylvin (PS), its monomethyl ether (PSM) and their sum (STB). The resulting models presented quite accurate predictions in an independent validation set with R2V values ranging between 0.79 and 0.91. The accuracy of the models strongly depended on the chemical being calibrated, with the lowest accuracy for PS, intermediate accuracy for PSM and highest accuracy for STB. The effect of collecting one, two or more (up to five) spectra per sample on the calibration models was studied and it was found that averaging multiple spectra yielded better accuracy as it may account for the heterogeneity of wood along the increment core within and between rings. Several statistical pretreatments of the spectra were tested and an automatic selection of wavenumbers prior to calibration. Without the automatic selection of wavenumbers, a first derivative of normalised spectra yielded the best accuracies, whereas after the automatic selection of wavenumbers, no particular statistical pretreatment appeared to yield better results than any other. Finally, the automatic selection of wavenumbers slightly improved the accuracy of the models for all traits. These results demonstrate the potential of NIR spectroscopy as a high-throughput and non-destructive phenotyping technique in tree breeding for the improvement of decay resistance in heartwood timber.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1845 ◽  
Author(s):  
Kiah Edwards ◽  
Marena Manley ◽  
Louwrens C. Hoffman ◽  
Anel Beganovic ◽  
Christian G. Kirchler ◽  
...  

Near-infrared (NIR) spectroscopy, combined with multivariate data analysis techniques, was used to rapidly differentiate between South African game species, irrespective of the treatment (fresh or previously frozen) or the muscle type. These individual classes (fresh; previously frozen; muscle type) were also determined per species, using hierarchical modelling. Spectra were collected with a portable handheld spectrophotometer in the 908–1676-nm range. With partial least squares discriminant analysis models, we could differentiate between the species with accuracies ranging from 89.8%–93.2%. It was also possible to distinguish between fresh and previously frozen meat (90%–100% accuracy). In addition, it was possible to distinguish between ostrich muscles (100%), as well as the forequarters and hindquarters of the zebra (90.3%) and springbok (97.9%) muscles. The results confirm NIR spectroscopy’s potential as a rapid and non-destructive method for species identification, fresh and previously frozen meat differentiation, and muscle type determination.


Sign in / Sign up

Export Citation Format

Share Document