scholarly journals Quantification and Classification of Diclofenac Sodium Content in Dispersed Commercially Available Tablets by Attenuated Total Reflection Infrared Spectroscopy and Multivariate Data Analysis

2021 ◽  
Vol 14 (5) ◽  
pp. 440
Author(s):  
Eirini Siozou ◽  
Vasilios Sakkas ◽  
Nikolaos Kourkoumelis

A new methodology, based on Fourier transform infrared spectroscopy equipped with an attenuated total reflectance accessory (ATR FT-IR), was developed for the determination of diclofenac sodium (DS) in dispersed commercially available tablets using chemometric tools such as partial least squares (PLS) coupled with discriminant analysis (PLS-DA). The results of PLS-DA depicted a perfect classification of the tablets into three different groups based on their DS concentrations, while the developed model with PLS had a sufficiently low root mean square error (RMSE) for the prediction of the samples’ concentration (~5%) and therefore can be practically used for any tablet with an unknown concentration of DS. Comparison with ultraviolet/visible (UV/Vis) spectrophotometry as the reference method revealed no significant difference between the two methods. The proposed methodology exhibited satisfactory results in terms of both accuracy and precision while being rapid, simple and of low cost.

2019 ◽  
Vol 73 (3) ◽  
pp. 329-336 ◽  
Author(s):  
Yongliang Liu ◽  
Hee-Jin Kim

In this investigation, we applied previously proposed simple algorithms to analyze the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectra of cotton fibers during secondary cell wall (SCW) biosynthesis. The infrared crystallinity ( CIIR) and maturity ( MIR) indices were compared from developmental fibers representing two pairs of upland cotton near isogenic lines (NILs). One pair of NILs consisted of Texas Marker-1 (TM-1) and an immature fiber ( im) mutant that differ in fiber maturity. The other pair of NILs included MD52ne and MD90ne that show variations in fiber strength. The observations revealed significant difference in the MIR values between developmental TM-1 and im NILs grown at a field in crop year 2015, and also a significant difference in the CIIR values between these NILs grown at the same field in crop year 2011. These different patterns of CIIR and MIR values during fiber development for the two different crop years indicated the impact of genetics and crop year on the development of fiber maturity and crystallinity of the TM-1 and im fibers. Furthermore, the tendency of linking CIIR with MIR values suggested that the im fibers have more CIIR development than the TM-1 fibers when the fibers have the similar MIR values. In contrast, the NIL pair having variations in fiber strength showed insignificant differences in the patterns of CIIR and MIR as well as the relationship between CIIR and MIR values. The results suggested that CIIR and MIR indices from ATR FT-IR measurement could be used to facilitate the understanding of how fiber genetics and crop year affect fiber maturity and crystallinity during SCW biosynthesis.


2020 ◽  
pp. 000370282096971
Author(s):  
Nataša Radosavljević Stevanović ◽  
Milena Jovanović ◽  
Federico Marini ◽  
Slavica Ražić

Heroin is one of the most frequently seized drugs in Southeastern Europe. Due to the position in the Balkan route, the Republic of Serbia keeps important role in suppression of the trafficking of heroin for domestic and foreign illegal market. This research is aimed to provide a good scientific approach in the field of seized heroin analysis. Two different forms of heroin are present in the illegal market, mostly in mixtures with typical “cutting” agents: caffeine, paracetamol, and sugars. It was observed that the quantity of pure heroin in seized samples slightly increases from year to year. The aim of this study was to produce a reliable and fast procedure for classification of illicit heroin samples and determination of the concentration range of heroin in the samples. For that purpose, the attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) technique was used and combined with such chemometric methods as principal component analysis, cluster analysis, and partial least squares. Principal component analysis (PCA) as an unsupervised model was used for exploratory purposes to identify trends, similarities, and differences between samples by reducing the dimensionality of the data. The cluster classification of examined samples turned out to be extremely useful to evaluate the possibilities of the ATR FT-IR technique to classify the samples appropriately into the patterns, the constituted clusters. Additionally, partial least square was the suitable method for the purpose of determination of the heroin hydrochloride concentration range in examined samples. It is proved that the joined application of spectroscopy and chemometrics can be extremely convenient and useful for forensic and drugs control laboratories.


2011 ◽  
Vol 59 (8) ◽  
pp. 4125-4129 ◽  
Author(s):  
Yanelis Saucedo-Hernández ◽  
María Jesús Lerma-García ◽  
José Manuel Herrero-Martínez ◽  
Guillermo Ramis-Ramos ◽  
Elisa Jorge-Rodríguez ◽  
...  

2020 ◽  
pp. 096703352096379
Author(s):  
Qian-Fa Liu ◽  
Dan Li ◽  
Yao-De Zeng ◽  
Wei-Zhuang Huang

Gel time of prepreg is an important quality determinant in the manufacturing process of Copper Clad Laminate (CCL). Prepreg consists of a glass fiber reinforcement impregnated to a predetermined level with a resin matrix. In this work, near infrared spectroscopy associated with partial least squares (PLS) regression has been applied to analyse the gel time of prepreg samples in the manufacturing process. A total of 250 prepreg samples were randomly divided into a calibration set and a validation prediction set with a ratio of 4:1. The values of Root Mean Square Error of leave-one-out Cross-Validation (RMSECV) and the coefficient of determination (R2) of the calibration model was 2.95 s and 0.92 respectively, with eight PLS factors used. The results of the paired t-test revealed that there was no significant difference between the NIR method and the reference method. The analytical result showed that, NIR spectroscopy was a rapid, nondestructive, and accurate method for real-time prediction of prepreg quality in the CCL manufacturing process.


2017 ◽  
Vol 262 ◽  
pp. 537-540
Author(s):  
Tamas Firkala ◽  
Franziska L. Lederer ◽  
Katrin Pollmann ◽  
Martin Rudolph

In this paper we report an approach for the structural analysis of mineral-collector interfaces of (bio) flotation systems by means of attenuated total reflection Fourier-transform infrared spectroscopy (ATR FT-IR). The extraction of rare earth metals from electronic waste materials is an important challenge for the recycling industry. In a current project bacteriophage are used as biocollectors to develop a bioflotation model system for the separation of lanthanum phosphate doped with cerium and terbium (LaPO4:Ce3+,Tb3+) from mixed fluorescent phosphors. As an initial analytical concept fluorescence microscopy was successfully applied to investigate particles of spent fluorescent lamp powders and to visualize the bacteriophage on the surface of the waste material. However, due to the restrictions of this technique we are not able to identify the molecular interactions of the bacteriophage with the recycled material. ATR FT-IR was found to be an effective tool to detect the major coat protein of the bacteriophage biocollectors on the surface of the LaPO4:Ce3+,Tb3+ and sense their specific bonding interaction opening the gates for the high level chemical characterization of the interface.


1999 ◽  
Vol 7 (8) ◽  
pp. 28-28
Author(s):  
James Benko

FT-IR (Fourier Transform Infrared) spectroscopy is an instrumental technique for measuring the infrared spectrum of materials. Many organic compounds have characteristic spectra that can be used for their identification, and specific functional groups (hydroxyl, carbonyl. amine, etc.) have characteristic bands at certain frequencies.Microscopes have been coupled to FT-IR instruments and allow the IR spectrum determination of single particles. This greatly increases the identification possibilities of small particles and contaminants. These particles can be mounted on sodium chloride or potassium bromide salt crystals, since these materials are transparent to infrared radiation.


2007 ◽  
Vol 21 (3) ◽  
pp. 169-176 ◽  
Author(s):  
Michael P. Mcleod ◽  
Aaron T. Dossey ◽  
M. Khalique Ahmed

In this short communication, we present the first Fourier Transform Infrared Absorbance (FT-IR) study of peruphasmal; a defensive secretion fromPeruphasma schultei. The spectral data collected are representative of the natural product structure proposed by Dossey et al. This study demonstrates the viability of FT-IR as another tool in the physical and biological chemist's repertoire for use in determining important structural characteristics from minute amounts of available sample.


Sign in / Sign up

Export Citation Format

Share Document