A scalable method for designing distributed controllers for systems with unknown initial states

Author(s):  
Salar Fattahi ◽  
Javad Lavaei ◽  
Murat Arcak
2005 ◽  
Vol 5 (3) ◽  
pp. 223-241
Author(s):  
A. Carpio ◽  
G. Duro

AbstractUnstable growth phenomena in spatially discrete wave equations are studied. We characterize sets of initial states leading to instability and collapse and obtain analytical predictions for the blow-up time. The theoretical predictions are con- trasted with the numerical solutions computed by a variety of schemes. The behavior of the systems in the continuum limit and the impact of discreteness and friction are discussed.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1443
Author(s):  
Zhiyuan Dong ◽  
Ai-Guo Wu

In this paper, we extend the quantum game theory of Prisoner’s Dilemma to the N-player case. The final state of quantum game theory of N-player Prisoner’s Dilemma is derived, which can be used to investigate the payoff of each player. As demonstration, two cases (2-player and 3-player) are studied to illustrate the superiority of quantum strategy in the game theory. Specifically, the non-unique entanglement parameter is found to maximize the total payoff, which oscillates periodically. Finally, the optimal strategic set is proved to depend on the selection of initial states.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Peter D. Drummond ◽  
Bogdan Opanchuk

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2673
Author(s):  
Weibo Huang ◽  
Weiwei Wan ◽  
Hong Liu

The online system state initialization and simultaneous spatial-temporal calibration are critical for monocular Visual-Inertial Odometry (VIO) since these parameters are either not well provided or even unknown. Although impressive performance has been achieved, most of the existing methods are designed for filter-based VIOs. For the optimization-based VIOs, there is not much online spatial-temporal calibration method in the literature. In this paper, we propose an optimization-based online initialization and spatial-temporal calibration method for VIO. The method does not need any prior knowledge about spatial and temporal configurations. It estimates the initial states of metric-scale, velocity, gravity, Inertial Measurement Unit (IMU) biases, and calibrates the coordinate transformation and time offsets between the camera and IMU sensors. The work routine of the method is as follows. First, it uses a time offset model and two short-term motion interpolation algorithms to align and interpolate the camera and IMU measurement data. Then, the aligned and interpolated results are sent to an incremental estimator to estimate the initial states and the spatial–temporal parameters. After that, a bundle adjustment is additionally included to improve the accuracy of the estimated results. Experiments using both synthetic and public datasets are performed to examine the performance of the proposed method. The results show that both the initial states and the spatial-temporal parameters can be well estimated. The method outperforms other contemporary methods used for comparison.


2020 ◽  
Vol 53 (2) ◽  
pp. 5863-5868
Author(s):  
Weichao Liang ◽  
Nina H. Amini ◽  
Paolo Mason

2010 ◽  
Vol 10 (1&2) ◽  
pp. 87-96
Author(s):  
J. Nie ◽  
H.C. Fu ◽  
X.X. Yi

We present a new analysis on the quantum control for a quantum system coupled to a quantum probe. This analysis is based on the coherent control for the quantum system and a hypothesis that the probe can be prepared in specified initial states. The results show that a quantum system can be manipulated by probe state-dependent coherent control. In this sense, the present analysis provides a new control scheme which combines the coherent control and state preparation technology.


Sign in / Sign up

Export Citation Format

Share Document