The Analysis and Predication of Energy Use in Smart Homes Based on Machine Learning

Author(s):  
Xuantang Xiong ◽  
Yanji Wei
Author(s):  
Mark Endrei ◽  
Chao Jin ◽  
Minh Ngoc Dinh ◽  
David Abramson ◽  
Heidi Poxon ◽  
...  

Rising power costs and constraints are driving a growing focus on the energy efficiency of high performance computing systems. The unique characteristics of a particular system and workload and their effect on performance and energy efficiency are typically difficult for application users to assess and to control. Settings for optimum performance and energy efficiency can also diverge, so we need to identify trade-off options that guide a suitable balance between energy use and performance. We present statistical and machine learning models that only require a small number of runs to make accurate Pareto-optimal trade-off predictions using parameters that users can control. We study model training and validation using several parallel kernels and more complex workloads, including Algebraic Multigrid (AMG), Large-scale Atomic Molecular Massively Parallel Simulator, and Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics. We demonstrate that we can train the models using as few as 12 runs, with prediction error of less than 10%. Our AMG results identify trade-off options that provide up to 45% improvement in energy efficiency for around 10% performance loss. We reduce the sample measurement time required for AMG by 90%, from 13 h to 74 min.


2021 ◽  
Vol 13 (4) ◽  
pp. 1595
Author(s):  
Valeria Todeschi ◽  
Roberto Boghetti ◽  
Jérôme H. Kämpf ◽  
Guglielmina Mutani

Building energy-use models and tools can simulate and represent the distribution of energy consumption of buildings located in an urban area. The aim of these models is to simulate the energy performance of buildings at multiple temporal and spatial scales, taking into account both the building shape and the surrounding urban context. This paper investigates existing models by simulating the hourly space heating consumption of residential buildings in an urban environment. Existing bottom-up urban-energy models were applied to the city of Fribourg in order to evaluate the accuracy and flexibility of energy simulations. Two common energy-use models—a machine learning model and a GIS-based engineering model—were compared and evaluated against anonymized monitoring data. The study shows that the simulations were quite precise with an annual mean absolute percentage error of 12.8 and 19.3% for the machine learning and the GIS-based engineering model, respectively, on residential buildings built in different periods of construction. Moreover, a sensitivity analysis using the Morris method was carried out on the GIS-based engineering model in order to assess the impact of input variables on space heating consumption and to identify possible optimization opportunities of the existing model.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1158
Author(s):  
Behrad Bezyan ◽  
Radu Zmeureanu

In most cases, the benchmarking models of energy use in houses are developed based on current and past data, and they continue to be used without any update. This paper proposes the method of retraining of benchmarking models by applying machine learning techniques when new measurements are made available. The method uses as a case study the measurements of heating energy demand from two semi-detached houses of Northern Canada. The results of the prediction of heating energy demand using static or augmented window techniques are compared with measurements. The daily energy signature is used as a benchmarking model due to its simplicity and performance. However, the proposed retraining method can be applied to any form of benchmarking model. The method should be applied in all possible situations, and be an integral part of intelligent building automation and control systems (BACS) for the ongoing commissioning for building energy-related applications.


Buildings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 139 ◽  
Author(s):  
Rezvan Mohammadiziazi ◽  
Melissa M. Bilec

Given the urgency of climate change, development of fast and reliable methods is essential to understand urban building energy use in the sector that accounts for 40% of total energy use in USA. Although machine learning (ML) methods may offer promise and are less difficult to develop, discrepancy in methods, results, and recommendations have emerged that requires attention. Existing research also shows inconsistencies related to integrating climate change models into energy modeling. To address these challenges, four models: random forest (RF), extreme gradient boosting (XGBoost), single regression tree, and multiple linear regression (MLR), were developed using the Commercial Building Energy Consumption Survey dataset to predict energy use intensity (EUI) under projected heating and cooling degree days by the Intergovernmental Panel on Climate Change (IPCC) across the USA during the 21st century. The RF model provided better performance and reduced the mean absolute error by 4%, 11%, and 12% compared to XGBoost, single regression tree, and MLR, respectively. Moreover, using the RF model for climate change analysis showed that office buildings’ EUI will increase between 8.9% to 63.1% compared to 2012 baseline for different geographic regions between 2030 and 2080. One region is projected to experience an EUI reduction of almost 1.5%. Finally, good data enhance the predicting ability of ML therefore, comprehensive regional building datasets are crucial to assess counteraction of building energy use in the face of climate change at finer spatial scale.


2019 ◽  
Vol 111 ◽  
pp. 05019
Author(s):  
Brian de Keijzer ◽  
Pol de Visser ◽  
Víctor García Romillo ◽  
Víctor Gómez Muñoz ◽  
Daan Boesten ◽  
...  

Machine learning models have proven to be reliable methods in the forecasting of energy use in commercial and office buildings. However, little research has been done on energy forecasting in dwellings, mainly due to the difficulty of obtaining household level data while keeping the privacy of inhabitants in mind. Gaining insight into the energy consumption in the near future can be helpful in balancing the grid and insights in how to reduce the energy consumption can be received. In collaboration with OPSCHALER, a measurement campaign on the influence of housing characteristics on energy costs and comfort, several machine learning models were compared on forecasting performance and the computational time needed. Nine months of data containing the mean gas consumption of 52 dwellings on a one hour resolution was used for this research. The first 6 months were used for training, whereas the last 3 months were used to evaluate the models. The results showed that the Deep Neural Network (DNN) performed best with a 50.1 % Mean Absolute Percentage Error (MAPE) on a one hour resolution. When comparing daily and weekly resolutions, the Multivariate Linear Regression (MVLR) outperformed other models, with a 20.1 % and 17.0 % MAPE, respectively. The models were programmed in Python.


Author(s):  
Hassan A ◽  
◽  
Hassan M ◽  
Hassan M ◽  
Ellahham S ◽  
...  

Artificial Intelligence (AI) refers to the design of computer programs and machines which simulate the rudiments of human intelligence independently [1]. Machine learning encompasses a multitude of deep learning algorithms, including Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) - both of which enable continuous analysis of large-scale data to make decisions consistent with previously detected patterns [1]. AI exhibits high potential for employment in the healthcare industry and research laboratories to accurately predict illness, maximize disease prevention, and refine treatment plans. As technological advancements are made, the application of AI will gradually become more feasible and appropriately lend itself to advancing quality care for frail patients even away from the hospital setting. Frailty is somewhat of an ambiguous diagnosis due to lack of a universally agreed upon definition and frailty assessment tool. Efforts have been put forth to delineate frailty and standardize its method of measurement, but many physicians with minimal to none geriatric experience are more likely to eyeball the patient from the foot end of the bed. Although the Comprehensive Geriatric Assessment (CGA) is a gold standard for multidisciplinary and systematic approach of frailty recognition, it is time-consuming and depends upon administers’ expertise [2]. The integration of AI into a frailty assessment strategy would not only cause a paradigm shift in the approach of physicians to this syndrome, but it would also revolutionize pre-existing protocols for management of frail and pre-frail status patients. Sufficient neglect of the variables that comprise frailty results in inefficacious treatment plans and fuels the cost of patient care. International guidelines have come to appreciate the reversibility of frailty and concur that it should be a mandatory component of patient evaluation [3]. AI may be the solution to pinpointing unidentified vulnerabilities that characterize frailty and ensuring that this entity of geriatric practice is more readily incorporated into other subspecialties, too. Chang et al. (2013) conducted research using “household goods” in hopes of facilitating “early detection of frailty and, hence, its early treatment” [4]. eChair, for example, was used to detect “slowness of movement, weakness and weight loss” [4]. Other devices were featured to detect long-term variations in frailty-determining elements and overall functional decline [4]. Pressure sensors, for example, have been embedded into walkers to measure “risk of fall” [4]. Similarly, Canadian Cardiovascular Society Guidelines (2017) encourage the monitoring of orthostatic vital signs to “identify individuals at risk of falls” [3]. Therefore, gradual integration of AI into day-to-day appliances can be exceptionally beneficial when monitoring patients for development of frailty-like “symptoms”. The authors would like to emphasize that the safety and accuracy of aforementioned AI technologies necessitate careful configuration. Literature unveils the key issues surrounding the safety of AI in healthcare [1]. Addressing these concerns is a top priority because frailty must be handled delicately and demands meticulous planning to eliminate risk factors. The concerns include, but are not limited to, oblivious impact, confidence of prediction, unexpected behaviors, privacy and anonymity [1]. Steps taken for mitigation have been described and, if executed, AI may be utilized to monitor and manage frail patients easily. Models for personalized risk estimates “should be well calibrated and efficient, and effective updating protocols should be implemented” [1]. “Automated systems and algorithms should be able to adjust for and respond to uncertainty and unpredictability” [1]. By centering our focus on the safety and accuracy of AI, we can transform older person’s homes into ‘smart homes’. Smart Homes are equipped with AI-embedded appliances; “networked sensors and devices that extend functionality of the home by adding intelligence” [5]. They collect data for continual analysis and predict potential physiological decline. These advancements would not only improve overall quality of life, but processed data supplements single visits to the primary care provider or geriatrician and eliminates the need for frequent journeys to the physician’s office. In addition, the implementation of AI may pave a pathway for investigating genetic biomarkers associated with increased risk of frailty. Machine learning AI could accelerate research that correlates frailty and Single Nucleotide Polymorphisms (SNP). However, current genetic sequencing technologies remain costly, and sequence processing is time-consuming. Third-generation sequencing technologies, such as Oxford Nanopore’s MinION and PromethION, are more cost-effective and agile solutions [6]. These advantages would make them more accessible and appropriate for use among suspected frail patients. Consequently, identification of SNPs already linked to frailty would be possible through deep RNNs that have been used to distinguish DNA modifications from the sequencing data provided by MinKNOW - the cloud-based platform responsible for data analysis [6,7]. Further advancement of “portable sequencing technology” would promote its use in smart nursing homes - enabling caregivers to closely monitor frailty-susceptible patients and tailoring their care based on the presence of specific SNPs. Ultimately, the authors recommend that the search for underlying risk factors pertinent to frailty commences with: (1) the administration of a simple, yet effective, preliminary frailty assessment in the clinical setting, or (2) opting for installation of AI technology into everydayuse equipment in a controlled environment (such as a smart home). If risk has been determined, (1) a more thorough frailty diagnosing tool may be undertaken by an experienced geriatrician or (2) the decision to undergo an AI-based confirmatory test to assess biomarkers and genetic sequences or (3) a combination of both may be performed.


2020 ◽  
Vol 7 ◽  
pp. 100044 ◽  
Author(s):  
Shideh Shams Amiri ◽  
Nariman Mostafavi ◽  
Earl Rusty Lee ◽  
Simi Hoque

Sign in / Sign up

Export Citation Format

Share Document