Space Charge Evolution in XLPE with Long-term Aging under DC Voltage - the Effect of Temperature and Polarity Reversals

Author(s):  
M. Abou-Dakka ◽  
A.T. Bulinski ◽  
S.S. Bamji
2021 ◽  
Author(s):  
Shiyou Wu ◽  
Shusheng Zheng ◽  
Aixu Zhong ◽  
Zongheng Zhang ◽  
Renjie Cao ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2271 ◽  
Author(s):  
Qingguo Chen ◽  
Jinfeng Zhang ◽  
Minghe Chi ◽  
Peng Tan ◽  
Wenxin Sun

The electric field distortion caused by space charge is an important factor affecting the operation reliability of oil–paper insulation in a converter transformer. To study the accumulation and decay characteristics of the space charge within oil-impregnated pressboard under DC and polarity reversal voltage, and consider the possible operating conditions of the converter transformer, the space charge behavior of oil-impregnated pressboard was measured by the pulsed electro-acoustic (PEA) method in the temperature range from −20 °C to 60 °C. The effect of temperature on the accumulation and decay characteristics of space charge is also analyzed. The space charge accumulated within the pressboard at low temperature is mainly homocharge injected by the electrode, while heterocharge formed by ion dissociation counteracts some of the homocharge at high temperature. Thus, the space charge of pressboard first increases, then decreases, with an increase in temperature. However, slow decay of the space charge causes severe distortion of the electric field distribution in the pressboard during voltage polarity reversal.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2732 ◽  
Author(s):  
Disheng Wang ◽  
Lin Du ◽  
Chenguo Yao

The air’s partial discharges (PD) under DC voltage are obviously affected by space charges. Discharge pulse parameters have statistical regularity, which can be applied to analyze the space charge effects and discharge characteristics during the discharge process. Paper studies air corona discharge under DC voltage with needle-plate model. Statistical rules of repetition rate (n), amplitude (V) and interval time (∆t) are extracted, and corresponding space charge effects and electric field distributions in PD process are analyzed. The discharge stages of corona discharge under DC voltage are divided. Furthermore, reflected space charge effects, electric field distributions and discharge characteristics of each stages are summarized to better explain the stage discharge mechanism. This research verifies that microcosmic process of PD under DC voltage can be described based on statistical method. It contributes to the microcosmic illustration of gas PD with space charges.


2020 ◽  
Vol 89 (3) ◽  
pp. 30401
Author(s):  
Imed Boukhris ◽  
Imen Kebaili ◽  
Halima Ibrahim El Saeedy ◽  
Ezzeddine Belgaroui ◽  
Ali Kallel

The reported simulation results could be considered as one of the firsts modeling of the effect of temperature on the electrical breakdown phenomenon in polyethylene nanoscale. The breakdown begins with an abrupt increase of the external current density without a subsequent saturation. Our results show that the increase of temperature at a constant applied DC voltage leads to a breakdown and to a decrease of the insulator's lifetime. These outcomes are strongly linked to the injection of free charges into the sample and to the temporal evolution of the conduction current.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1836 ◽  
Author(s):  
Ik-Soo Kwon ◽  
Sun-Jin Kim ◽  
Mansoor Asif ◽  
Bang-Wook Lee

The influx of a switching impulse during DC steady-state operations causes severe electrical stress on the insulation of HVDC cables. Thus, the insulation should be designed to withstand a superimposed switching impulse. All major manufacturers of DC cables perform superimposed switching impulse breakdown tests for prequalification. However, an experimental approach to study space charge dynamics in dielectrics under a switching impulse superposed on DC voltage has not been reported yet. This is because, unlike the DC stress, it is not possible to study the charge dynamics experimentally under complex stresses, such as switching impulse superposition. Hence, in order to predict and investigate the breakdown characteristics, it is necessary to obtain accurate electric field distribution considering space charge dynamics using a numerical approach. Therefore, in this paper, a numerical study on the switching impulse superposition was carried out. The space charge dynamics and its distribution within the dielectric under DC stress were compared with those under a superimposed switching impulse using a bipolar charge transport (BCT) model. In addition, we estimated the effect of a superimposed switching impulse on a DC electric field distribution. It was concluded that the temperature conditions of dielectrics have a significant influence on electric field and space charge dynamics.


Sign in / Sign up

Export Citation Format

Share Document