Space Charge Simulation of Electric Tree Before Germination in XLPE at DC Voltage Based on Improved Bipolar Carrier Transport Model

Author(s):  
Shiyou Wu ◽  
Shusheng Zheng ◽  
Aixu Zhong ◽  
Zongheng Zhang ◽  
Renjie Cao ◽  
...  
1963 ◽  
Vol 46 (4) ◽  
pp. 721-731 ◽  
Author(s):  
Paul G. LeFevre ◽  

A previous study showed that human red blood cells equilibrate much less rapidly with D-glucose at moderately high concentrations than with C14-glucose added after the net movement is completed. This had been predicted from a simple reversible mobile-carrier mediated-transport model system suggested by the net monosaccharide transport kinetics in these cells, but is also consistent with the more complex models proposed for certain active transport systems to account for elevation of tracer fluxes of even low-affinity "substrates" when their trans-concentration is raised. The simple model predicts, however, that with any sugar showing a much lower apparent affinity for the reactive sites, such as D-ribose, this phenomenon would not be observed, and tracer equilibration should proceed at approximately the same rate as net uptake. The latter expectation was confirmed experimentally by analyses of the ribose, or radioactivity, content of washed red cells sampled serially during incubation with ribose or C14-ribose in the appropriate mixtures. The tracer ribose movement showed no evidence of a relatively rapid exchange component. The relative rapidity of glucose tracer uptake into cells preloaded with ordinary glucose may therefore more readily be attributed simply to depression of tracer efflux by competition for the saturated reactive sites, than to any action of the trans-concentration on the influx by way of a coupled exchange process.


2019 ◽  
pp. 27-48
Author(s):  
Yaser M. Banadaki ◽  
Safura Sharifi

2005 ◽  
Vol 44 (4B) ◽  
pp. 2584-2585
Author(s):  
Kohkichi Konno ◽  
Osamu Matsushima ◽  
Kiyohito Hara ◽  
Gaku Suzuki ◽  
Dondee Navarro ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2732 ◽  
Author(s):  
Disheng Wang ◽  
Lin Du ◽  
Chenguo Yao

The air’s partial discharges (PD) under DC voltage are obviously affected by space charges. Discharge pulse parameters have statistical regularity, which can be applied to analyze the space charge effects and discharge characteristics during the discharge process. Paper studies air corona discharge under DC voltage with needle-plate model. Statistical rules of repetition rate (n), amplitude (V) and interval time (∆t) are extracted, and corresponding space charge effects and electric field distributions in PD process are analyzed. The discharge stages of corona discharge under DC voltage are divided. Furthermore, reflected space charge effects, electric field distributions and discharge characteristics of each stages are summarized to better explain the stage discharge mechanism. This research verifies that microcosmic process of PD under DC voltage can be described based on statistical method. It contributes to the microcosmic illustration of gas PD with space charges.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1836 ◽  
Author(s):  
Ik-Soo Kwon ◽  
Sun-Jin Kim ◽  
Mansoor Asif ◽  
Bang-Wook Lee

The influx of a switching impulse during DC steady-state operations causes severe electrical stress on the insulation of HVDC cables. Thus, the insulation should be designed to withstand a superimposed switching impulse. All major manufacturers of DC cables perform superimposed switching impulse breakdown tests for prequalification. However, an experimental approach to study space charge dynamics in dielectrics under a switching impulse superposed on DC voltage has not been reported yet. This is because, unlike the DC stress, it is not possible to study the charge dynamics experimentally under complex stresses, such as switching impulse superposition. Hence, in order to predict and investigate the breakdown characteristics, it is necessary to obtain accurate electric field distribution considering space charge dynamics using a numerical approach. Therefore, in this paper, a numerical study on the switching impulse superposition was carried out. The space charge dynamics and its distribution within the dielectric under DC stress were compared with those under a superimposed switching impulse using a bipolar charge transport (BCT) model. In addition, we estimated the effect of a superimposed switching impulse on a DC electric field distribution. It was concluded that the temperature conditions of dielectrics have a significant influence on electric field and space charge dynamics.


1989 ◽  
Vol 66 (7) ◽  
pp. 3066-3073 ◽  
Author(s):  
Xing Zhou ◽  
Thomas Y. Hsiang ◽  
R. J. Dwayne Miller

1990 ◽  
Vol 192 ◽  
Author(s):  
Robin M. Dawson ◽  
J. H. Smith ◽  
C. R. Wronski

ABSTRACTSpace charge limited currents of holes in intrinsic hydrogenated amorphous silicon (a-Si:H) have been obtained using novel p+-intrinsic-p+ (p-i-p) structures. The presence of these hole space charge limited currents is verified from their temperature dependence and their dependence on a wide range of intrinsic layer thickness. The carrier transport and space charge limited currents in the p-i-p structures are compared with those of n-i-n structures and the results are discussed in terms of a self consistent density of states in the gap.


2019 ◽  
Vol 26 (3) ◽  
pp. 792-800
Author(s):  
Rujia Men ◽  
Zhipeng Lei ◽  
Jiancheng Song ◽  
Yuanyuan Li ◽  
Lingyan Lin ◽  
...  

AIChE Journal ◽  
1990 ◽  
Vol 36 (7) ◽  
pp. 1061-1074 ◽  
Author(s):  
Angel G. Guzmán-Garcia ◽  
Peter N. Pintauro ◽  
Mark W. Verbrugge ◽  
Robert F. Hill

2015 ◽  
Vol 22 (3) ◽  
pp. 1739-1746 ◽  
Author(s):  
Meng Huang ◽  
Yuanxiang Zhou ◽  
Weijiang Chen ◽  
Licheng Lu ◽  
Fubao Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document