A Buck Converter Using A Fully-Integrated Current-Mode Dual-Path Type-III Compensator for NB-IoT Applications

Author(s):  
Yifan Zhang ◽  
Min Tan
2021 ◽  
Vol 1920 (1) ◽  
pp. 012043
Author(s):  
Zijiang Yang ◽  
Chenqiang Jia ◽  
Huimin Liu

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Jun Tang ◽  
Tian Guo ◽  
Jung Sik Kim ◽  
Jeongjin Roh

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3009
Author(s):  
Mohammad Tahan ◽  
David O. Bamgboje ◽  
Tingshu Hu

A new single-input multiple-output (SIMO) converter is proposed in this work by incorporating flyback and buck converters in a master–slave configuration. The objective of this work is to address the cross regulation problem, achieve tight voltage regulation, improve the circuit form factor and attain a fast transient response for a SIMO flyback converter. The flyback converter maintains the output channels within 10% of their rated voltages and the SIMO buck converter is placed in series with the flyback converter such that it compensates for the output voltage deviation. Moreover, a time multiplexing switching scheme decouples output channel to eliminate the cross-regulation problem and remove the need for an additional winding transformer per each output channel. A type II compensator with a peak current mode controller was designed to achieve faster transient response which is critical for the proposed configuration. A thorough steady-state analysis was carried out on a triple output channel topology to obtain the design criteria and component values. MATLAB/Simscape modelling and simulation was used to validate the effectiveness of the proposed converter with the result yielding satisfactory transience even with load disturbance. Additionally, the result of the proposed converter is compared with previously published works.


2013 ◽  
Vol 23 (04) ◽  
pp. 1350062 ◽  
Author(s):  
GUOHUA ZHOU ◽  
BOCHENG BAO ◽  
JIANPING XU

The complex dynamics and coexisting fast-slow scale instability in current-mode controlled buck converter with constant current load (CCL), operating in both continuous conduction mode (CCM) and discontinuous conduction mode (DCM), are investigated in this paper. Via cycle-by-cycle computer simulation and experimental measurement of current-mode controlled buck converter with CCL, it is found that a unique fast-slow scale instability exists in the second-order switching converter. It is also found that a unique period-doubling accompanied by Neimark–Sacker bifurcation exists in this simple second-order converter, which is different from period-doubling or Neimark–Sacker bifurcations reported previously. Based on a nonlinear discrete-time model and the corresponding Jacobian, the effects of CCL and input voltage on the dynamics of current-mode controlled buck converter are investigated and verified theoretically. Fixed point analysis for slow-scale low-frequency oscillation is also given to verify the dynamics and the coexisting fast-slow scale instability.


Sign in / Sign up

Export Citation Format

Share Document