A model-based cell decomposition approach to on-line pursuit-evasion path planning and the video game Ms. Pac-Man

Author(s):  
Greg Foderaro ◽  
Ashleigh Swingler ◽  
Silvia Ferrari
2011 ◽  
Vol 30 (14) ◽  
pp. 1709-1727 ◽  
Author(s):  
Sourabh Bhattacharya ◽  
Seth Hutchinson

In this paper, we address the problem of surveillance in an environment with obstacles. We consider the problem in which a mobile observer attempts to maintain visual contact with a target as it moves through an environment containing obstacles. This surveillance problem is a variation of traditional pursuit–evasion games, with the additional condition that the pursuer immediately loses the game if at any time it loses sight of the evader. We analyze this tracking problem as a game of kind. We use the method of explicit policy to compute guaranteed strategies for surveillance for the observer in an environment containing a single corner. These strategies depend on the initial positions of the observer and the target in the workspace. Based on these strategies a partition of the visibility polygon of the players is constructed. The partitions have been constructed for varying speeds of the observer and the target. Using these partitions we provide a sufficient condition for escape of a target in a general environment containing polygonal obstacles. Moreover, for a given initial target position, we provide a polynomial-time algorithm that constructs a convex polygonal region that provides an upper-bound for the set of initial observer positions from which it does not lose the game. We extend our results to the case of arbitrary convex obstacles with differentiable boundaries. We also present a sufficient condition for tracking and provide a lower-bound on the region around the initial position of the target from which the observer can track the target. Finally, we provide an upper bound on the area of the region in which the outcome of the game is unknown.


2010 ◽  
Vol 38 (3) ◽  
pp. 228-244 ◽  
Author(s):  
Nenggen Ding ◽  
Saied Taheri

Abstract Easy-to-use tire models for vehicle dynamics have been persistently studied for such applications as control design and model-based on-line estimation. This paper proposes a modified combined-slip tire model based on Dugoff tire. The proposed model takes emphasis on less time consumption for calculation and uses a minimum set of parameters to express tire forces. Modification of Dugoff tire model is made on two aspects: one is taking different tire/road friction coefficients for different magnitudes of slip and the other is employing the concept of friction ellipse. The proposed model is evaluated by comparison with the LuGre tire model. Although there are some discrepancies between the two models, the proposed combined-slip model is generally acceptable due to its simplicity and easiness to use. Extracting parameters from the coefficients of a Magic Formula tire model based on measured tire data, the proposed model is further evaluated by conducting a double lane change maneuver, and simulation results show that the trajectory using the proposed tire model is closer to that using the Magic Formula tire model than Dugoff tire model.


1999 ◽  
Vol 39 (4) ◽  
pp. 103-111 ◽  
Author(s):  
Frank Obenaus ◽  
Karl-Heinz Rosenwinkel ◽  
Jens Alex ◽  
Ralf Tschepetzki ◽  
Ulrich Jumar

This report presents the main components of a system for the model-based control of aerobic biological wastewater treatment plants. The crucial component is a model which is linked to the actual processes via several interfaces and which contains a unit which can immediately follow up the current process state. The simulation calculation of the model is based on data which are yielded by on-line measuring devices. If the sensors should fail at times, there are available a number of alternative concepts, some of which are based on the calculations of artificial neural networks or linear methods.


2013 ◽  
Vol 676 ◽  
pp. 321-324
Author(s):  
Lei Guo ◽  
Qun Zhan Li

Accidents of icing on catenary have great impacts on normal operation of trains. An on-line anti-icing technology used static var generator (SVG) for catenary was proposed, which can prevent icing formation without interrupting trains normal operation. The heat balance equations for catenary were solved, whose results were compared with data provided by TB/T 3111 and testing show the equation was correct. The simulation model based on Matlab was bulit , whose results and analysis show the correctness of the method.


1992 ◽  
Author(s):  
Michael E. Parten ◽  
R. R. Rhinehart ◽  
Vikram Singh

Sign in / Sign up

Export Citation Format

Share Document