Information Random Propagation Behavior in Social Networks Considering Node Centrality

Author(s):  
Yaohui Hao ◽  
Juwei Yan ◽  
Jiajia Sun ◽  
Bei Zeng
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Douglas Guilbeault ◽  
Damon Centola

AbstractThe standard measure of distance in social networks – average shortest path length – assumes a model of “simple” contagion, in which people only need exposure to influence from one peer to adopt the contagion. However, many social phenomena are “complex” contagions, for which people need exposure to multiple peers before they adopt. Here, we show that the classical measure of path length fails to define network connectedness and node centrality for complex contagions. Centrality measures and seeding strategies based on the classical definition of path length frequently misidentify the network features that are most effective for spreading complex contagions. To address these issues, we derive measures of complex path length and complex centrality, which significantly improve the capacity to identify the network structures and central individuals best suited for spreading complex contagions. We validate our theory using empirical data on the spread of a microfinance program in 43 rural Indian villages.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Wei-Chung Liu ◽  
Liang-Cheng Huang ◽  
Chester Wai-Jen Liu ◽  
Ferenc Jordán

2021 ◽  
Author(s):  
Mehrdad Rostami ◽  
Mourad Oussalah

Abstract Community detection is one of the basic problems in social network analysis. Community detection on an attributed social networks aims to discover communities that have not only adhesive structure but also homogeneous node properties. Although community detection has been extensively studied, attributed community detection of large social networks with a large number of attributes remains a vital challenge. To address this challenge, a novel attributed community detection method through an integration of feature weighting with node centrality techniques is developed in this paper. The developed method includes two main phases: (1) Weight Matrix Calculation, (2) Label Propagation Algorithm-based Attributed Community Detection. The aim of the first phase is to calculate the weight between two linked nodes using structural and attribute similarities, while, in the second phase, an improved label propagation algorithm-based community detection method in attributed social network is proposed. The purpose of the second phase is to detect different communities by employing the calculated weight matrix and node popularity. After implementing the proposed method, its performance is compared with several other state of the art methods using some benchmarked real-world datasets. The results indicate that the developed method outperforms several other state of the art methods and ascertain the effectiveness of the developed method for attributed community detection.


Sign in / Sign up

Export Citation Format

Share Document