Predictive emissions monitoring systems: a low-cost alternative for emissions monitoring [in cement industry]

Author(s):  
J. Kamas ◽  
J. Keeler
2018 ◽  
Vol 44 ◽  
pp. 00006 ◽  
Author(s):  
Marek Badura ◽  
Piotr Batog ◽  
Anetta Drzeniecka-Osiadacz ◽  
Piotr Modzel

Monitoring systems are needed to obtain information about particulate matter (PM) concentrations and to make such information accessible to the public. Small, low-cost, optical sensors could be used to improve the spatial and temporal resolution of PM data. The paper presents results of collocated comparison of four low-cost PM sensors and TEOM analyser, conducted from 20-08-2017 to 24-12-2017 in Wrocław, Poland. Plantower PMS7003 and Nova Fitness SDS011 sensors proved to be the best in terms of precision and were linearly correlated with TEOM data. Alphasense OPC-N2 sensors exhibited only moderate precision and linearity. Winsen ZH03A sensors had low repeatability between units and only one copy demonstrated good operation possibilities. All tested sensors had a bias in relation to PM2.5 concentrations obtained from TEOM.


Author(s):  
Renata Archetti ◽  
Maria Gabriella Gaeta ◽  
Fabio Addona ◽  
Leonardo Damiani ◽  
Alessandra Saponieri ◽  
...  

The use of video-monitoring techniques is significantly increased due to the diffusion of high-resolution cameras at relatively low-costs and they are largely used to estimate the shoreline evolution and wave run-up, as important coastal state indicators to be monitored and predicted for the assessment of flooding and erosion risks. In this work, we present an integrated approach based on the results from the low-cost video monitoring systems and the numerical modeling chain by means of SWAN and XBeach to accurately simulate and predict the swash zone processes.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/nLGNneJzmIU


Author(s):  
H. B. Chi ◽  
M. F. N. Tajuddin ◽  
N. H. Ghazali ◽  
A. Azmi ◽  
M. U. Maaz

<span>This paper presents a low-cost PV current-voltage or <em>I-V</em> curve tracer that has the Internet of Things (IoT) capability. Single ended primary inductance converter (SEPIC) is used to develop the <em>I-V</em> tracer, which is able to cope with rapidly changing irradiation conditions. The <em>I-V</em> tracer control software also has the ability to automatically adapt to the varying irradiation conditions. The performance of the <em>I-V</em> curve tracer is evaluated and verified using simulation and experimental tests.</span>


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3021 ◽  
Author(s):  
Zeba Idrees ◽  
Zhuo Zou ◽  
Lirong Zheng

With the swift growth in commerce and transportation in the modern civilization, much attention has been paid to air quality monitoring, however existing monitoring systems are unable to provide sufficient spatial and temporal resolutions of the data with cost efficient and real time solutions. In this paper we have investigated the issues, infrastructure, computational complexity, and procedures of designing and implementing real-time air quality monitoring systems. To daze the defects of the existing monitoring systems and to decrease the overall cost, this paper devised a novel approach to implement the air quality monitoring system, employing the edge-computing based Internet-of-Things (IoT). In the proposed method, sensors gather the air quality data in real time and transmit it to the edge computing device that performs necessary processing and analysis. The complete infrastructure & prototype for evaluation is developed over the Arduino board and IBM Watson IoT platform. Our model is structured in such a way that it reduces the computational burden over sensing nodes (reduced to 70%) that is battery powered and balanced it with edge computing device that has its local data base and can be powered up directly as it is deployed indoor. Algorithms were employed to avoid temporary errors in low cost sensor, and to manage cross sensitivity problems. Automatic calibration is set up to ensure the accuracy of the sensors reporting, hence achieving data accuracy around 75–80% under different circumstances. In addition, a data transmission strategy is applied to minimize the redundant network traffic and power consumption. Our model acquires a power consumption reduction up to 23% with a significant low cost. Experimental evaluations were performed under different scenarios to validate the system’s effectiveness.


Author(s):  
Ji-Eun Joo ◽  
Haewon Hwang ◽  
Yujin Jeon ◽  
Jaewon Jung ◽  
Yu Hu ◽  
...  

: This paper presents a couple of meal monitoring systems for senile dementia patients by using electronic weight and temperature sensors. These monitoring systems enable to convey the information of the amount of meal taken by the patients in real-time via wireless communication networks onto the mobile phones of their families or nurses in charge. Thereby, the nurses can easily spot the most desperate patient to take care of while the families can have relief to see the crucial information for survival of their parents at least three times a day. Meanwhile, the senile dementia patients tend to suffer the burn of their tongues because they can hardly recognize the temperature of hot meals served and therefore avoid the burn of tongues. This phenomenon can be discarded by utilizing the meal temperature monitoring system which displays alarm to the patients when the meal temperature is above the reference. These meal monitoring systems can be easily implemented by utilizing low-cost sensor chips and Arduino UNO boards so that elder-care hospitals and nursing homes can afford to exploit them with no additional cost. Hence, we believe that the proposed monitoring systems would be a potential solution to provide a great help and relief not only for the professional nursing nurses working in elder-care hospitals and nursing homes, but also for the families of the dementia patients.


In the present work, we have designed a health monitoring system based on Node MCU to monitor temperature, heart rate and oxygen saturation level (SpO2) signals, sensed by respective sensors. The necessary signal conditioning circuits have been designed in our laboratory using off-the shelf electronic components. A Data acquisition system has been designed using ESP 32 Node MCU. The designed system is a low-cost alternative to the commercially available USB controller based health monitoring systems. Firmware has been developed and deployed into the Node MCU using arduino IDE. The acquired data has been displayed on OLED display. The result shows maximum errors in the measured parameters within 2%. The designed system helps to achieve portability, high functionality and low cost which makes it an easy accessible tool for public, hospital, sports healthcare and other medical purposes.


Reactive Powder Concrete (RPC) is a type of high strength concrete that is characterized by its excellent engineering properties. Inclusion of high silica fume contents and high cement demand are the most essential parameters in the development of RPC. Silica fume is a highly cost and unavailable material in many countries. Cement industry is not a sustainable eco-friendly process. High heat of hydration and many shrinkage cracks are also the most shortcomings obtained from cement utilization. Therefore, it’s urgently required to replace the utilization of silica fume and cement with partially or totally environmental friendly materials in the production of RPC. Metakaoline (MK) is a low cost, available and high pozzolanic material that can substitute silica fume in concrete. Alkali Activated Materials (AAM) binders are new technology that can totally replace the cement in concrete. The main objective of this study is to evaluate the performance of RPC based cement developed by MK and the performance of RPC based AAM under different curing conditions. Slag and MK are the used AAM in this research which are eco-friendly, sustainable and quite available materials in Egypt. The engineering properties like compressive strength and sorptivity are studied to investigate the behavior of RPC. It was concluded that thermal curing has shown a good impact in the performance of all RPC mixes. MK has shown satisfied results in the behavior of RPC based AAM under thermal curing. Slag shows better mechanical and durability properties that resemble the behavior of the conventional RPC based cement.


2021 ◽  
Author(s):  
Miguel Arestegui ◽  
Miluska Ordoñez ◽  
Abel Cisneros ◽  
Giorgio Madueño ◽  
Cinthia Almeida ◽  
...  

&lt;p&gt;Debris flow, locally known as huaycos, impact the east part of the metropolitan city of Lima, capital of Peru. However, after many extreme events such as the one related to the 2017 &amp;#8220;Coastal Ni&amp;#241;o&amp;#8221; or the one in 1987, there is a lack of historical data and sufficiently accurate monitoring systems.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;The fact that this area is densely populated presents obvious challenges, from social and physical perspectives, but also some opportunities. We present our experience using open source &amp; low cost rain gauges on previously unmonitored microwatershed, as part of a broader watershed-level monitoring system enhancement by SENAMHI (National Meteorological and Hydrological Service). We also present our experience on linking monitoring systems, debris flow modelling and community based risk management towards developing operational EWS.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document