scholarly journals Dementia Patient’s Meal Monitoring Systems Using Weight and Temperature Sensors

Author(s):  
Ji-Eun Joo ◽  
Haewon Hwang ◽  
Yujin Jeon ◽  
Jaewon Jung ◽  
Yu Hu ◽  
...  

: This paper presents a couple of meal monitoring systems for senile dementia patients by using electronic weight and temperature sensors. These monitoring systems enable to convey the information of the amount of meal taken by the patients in real-time via wireless communication networks onto the mobile phones of their families or nurses in charge. Thereby, the nurses can easily spot the most desperate patient to take care of while the families can have relief to see the crucial information for survival of their parents at least three times a day. Meanwhile, the senile dementia patients tend to suffer the burn of their tongues because they can hardly recognize the temperature of hot meals served and therefore avoid the burn of tongues. This phenomenon can be discarded by utilizing the meal temperature monitoring system which displays alarm to the patients when the meal temperature is above the reference. These meal monitoring systems can be easily implemented by utilizing low-cost sensor chips and Arduino UNO boards so that elder-care hospitals and nursing homes can afford to exploit them with no additional cost. Hence, we believe that the proposed monitoring systems would be a potential solution to provide a great help and relief not only for the professional nursing nurses working in elder-care hospitals and nursing homes, but also for the families of the dementia patients.

Author(s):  
Yu Hu ◽  
Ji-Eun Joo ◽  
Eunju Choi ◽  
Leeho Yoo ◽  
Dukyoo Jung ◽  
...  

This paper presents a few meal-monitoring systems for elder residents (especially patients) in LTCFs by using electronic weight and temperature sensors. These monitoring systems enable to convey the information of the amount of meal taken by the patients in real-time via wireless communication networks onto the mobile phones of their nurses in charge or families. Thereby, the nurses can easily spot the most patients who need immediate assistance, while the families can have relief in seeing the crucial information for the well-being of their parents at least three times a day. Meanwhile, the patients tend to suffer burns of their tongues because they can hardly recognize the temperature of hot meals served. This situation can be avoided by utilizing the meal temperature-monitoring system, which displays an alarm to the patients when the meal temperature is above the reference. These meal-monitoring systems can be easily implemented by utilizing low-cost sensor chips and Arduino NANO boards so that elder-care hospitals and nursing homes can afford to exploit them with no additional cost. Hence, we believe that the proposed monitoring systems would be a potential solution to provide a great help and relief for the professional nurses working in elder-care hospitals and nursing homes.


Author(s):  
Sheikh I. Ahamed ◽  
Mohammad Zulkernine ◽  
Munirul M. Haque

Pervasive computing has progressed significantly during this decade due to the developments and advances in portable, low-cost, and light-weight devices along with the emergence of short range and low-power wireless communication networks. Pervasive computing focuses on combining computing and communications with the surrounding physical environment to make computing and communication transparent to the users in day-to-day activities. In pervasive computing, numerous, casually accessible, often invisible, frequently mobile or embedded devices form an ad-hoc network that occasionally connects to fixed networks structure too. These pervasive computing devices often collect information about the surrounding environment using various sensors. Pervasive computing has the inherent disadvantages of slow, expensive connections, frequent line disconnections, limited host bandwidth, location dependent data, and so forth. These challenges make pervasive computing applications more vulnerable to various security-related threats. However, traditional security measures do not fit well in pervasive computing applications. Since location and context are key attributes of pervasive computing applications, privacy issues need to be handled in a sophisticated manner. The devices in a pervasive computing network leave and join in an ad-hoc manner. This device behavior creates a need for new trust models for pervasive computing applications. In this chapter, we address the challenges and requirements of security, privacy, and trust for pervasive applications. We also discuss the state-of-the-art of pervasive security, privacy, and trust along with some open issues.


2015 ◽  
Vol 96 (10) ◽  
pp. 1687-1698 ◽  
Author(s):  
Noam David ◽  
Omry Sendik ◽  
Hagit Messer ◽  
Pinhas Alpert

Abstract Severe visibility limitations resulting from fog may lead to acute transportation accidents and high losses of property and lives. Thus, reliable monitoring facilities are of extreme importance. Nevertheless, current monitoring instruments suffer from low spatial resolution, high costs, or lack of precision at near-surface levels. It has, however, recently been shown that the commercial microwave links that form the infrastructure of cellular communication networks can provide crucial information regarding the appearance of dense fog and its intensity. Typical microwave systems currently in operation make use of frequencies between 6 and 40 GHz and, thus, can only monitor heavy fog. However, there is a growing demand for high data rates and expanded bandwidth in modern mobile radio networks. As a result, higher frequencies (e.g., around 80 GHz) are being implemented in order to fulfill these increased requirements. Notably, the attenuation induced as a result of fog at a given intensity increases as operating frequency rises, allowing, for the first time, the possibility of using this system to monitor typical fog intensities, at high resolution and low cost. Here, a theoretical simulation is presented in which simulated fog patches are introduced into an area where a network of links is deployed. Two-dimensional maps are generated utilizing the simulated microwave network to represent sensitivity thresholds for fog detection at three different frequencies: 20, 38, and 80 GHz. Real-data measurements of fog are also demonstrated using 38-GHz band links. The results indicate the vast future potential of commercial microwave links as an opportunistic system for monitoring fog.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2717
Author(s):  
Ricardo M. R. Adão ◽  
Eduardo Balvís ◽  
Alicia V. Carpentier ◽  
Humberto Michinel ◽  
Jana B. Nieder

The age of the Internet of Things (IoT) and smart cities calls for low-power wireless communication networks, for which the Long-Range (LoRa) is a rising star. Efficient network engineering requires the accurate prediction of the Received Signal Strength Indicator (RSSI) spatial distribution. However, the most commonly used models either lack the physical accurateness, resolution, or versatility for cityscape real-world building distribution-based RSSI predictions. For this purpose, we apply the 2D electric field wave-propagation Oscillator Finite-Difference Time-Domain (O-FDTD) method, using the complex dielectric permittivity to model reflection and absorption effects by concrete walls and the receiver sensitivity as the threshold to obtain a simulated coverage area in a 600 × 600 m2 square. Further, we report a simple and low-cost method to experimentally determine the signal coverage area based on mapping communication response-time delays. The simulations show a strong building influence on the RSSI, compared against the Free-Space Path (FSPL) model. We obtain a spatial overlap of 84% between the O-FDTD simulated and experimental signal coverage maps. Our proof-of-concept approach is thoroughly discussed compared to previous works, outlining error sources and possible future improvements. O-FDTD is demonstrated to be most promising for both indoors and outdoors applications and presents a powerful tool for IoT and smart city planners.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2318 ◽  
Author(s):  
Luis Manuel Fernández-Ahumada ◽  
Jose Ramírez-Faz ◽  
Marcos Torres-Romero ◽  
Rafael López-Luque

In recent decades, considerable efforts have been devoted to process automation in agriculture. Regarding irrigation systems, this demand has found several difficulties, including the lack of communication networks and the large distances to electricity supply points. With the recent implementation of LPWAN wireless communication networks (SIGFOX, LoraWan, and NBIoT), and the expanding market of electronic controllers based on free software and hardware (i.e., Arduino, Raspberry, ESP, etc.) with low energy requirements, new perspectives have appeared for the automation of agricultural irrigation networks. This paper presents a low-cost solution for automatic cloud-based irrigation. In this paper, it is proposed the design of a node network based on microcontroller ESP32-Lora and Internet connection through SIGFOX network. The results obtained show the stability and robustness of the designed system.


Author(s):  
Konstantinos B. Baltzis

A significant part of worldwide energy is consumed by the ICT infrastructure with wireless sector to be among the main contributors to this consumption. As a result, the rising energy costs and increasing carbon footprint of operating wireless communication networks have generated a keen interest in the design and development of “green” networks, that is, networks characterized by energy efficiency, reduced CO2 emissions, and low cost deployment. In this article, we discuss current issues and trends in green wireless networking. We explain the motivation behind it, discuss basic principles, review current trends in the field, and highlight upcoming challenges and future research directions. The aforementioned issues have been treated in detail in the scientific literature. However, the present study overviews current and future trends in green wireless networking with focus on providing an insight into the field that will be useful not only for experts but for non-specialists also.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Helal Chowdhury ◽  
Janne Lehtomäki ◽  
Juha-Pekka Mäkelä ◽  
Sastri Kota

Infostation, hotspot, and drive-thru internet are examples of sparse coverage-based wireless networks. These wireless communication networks provide low-cost, delay insensitive high data rate services intermittently with discontinuous coverage. Radio propagation parameters, velocity of the user, distance between the user, and access point are the key factors that affect the throughput and the amount of information downloaded from such sparse coverage-based wireless networks. To evaluate the performance of such wireless communication networks analytically the impact of above mentioned factors can be modeled with simplified relationship model such as received signal strength versus distance or signal to noise ratio versus throughput. In the paper, we exploit the relationship between throughput and distance and develop two throughput distance relationship models to evaluate the performance of multirate wireless networks. These two throughput distance relationship models are used in calculation of average throughput as well as downloaded file size. Numerical values are presented for the IEEE 802.11n standard. The numerical results verify that the new proposed technique can be used as an alternative to the simulations to evaluate the performance of sparse coverage-based wireless networks.


Sign in / Sign up

Export Citation Format

Share Document