scholarly journals ASSESSMENT OF COASTAL VULNERABILITY BASED ON THE USE OF INTEGRATED LOW-COST MONITORING APPROACH AND BEACH MODELLING: TWO ITALIAN STUDY

Author(s):  
Renata Archetti ◽  
Maria Gabriella Gaeta ◽  
Fabio Addona ◽  
Leonardo Damiani ◽  
Alessandra Saponieri ◽  
...  

The use of video-monitoring techniques is significantly increased due to the diffusion of high-resolution cameras at relatively low-costs and they are largely used to estimate the shoreline evolution and wave run-up, as important coastal state indicators to be monitored and predicted for the assessment of flooding and erosion risks. In this work, we present an integrated approach based on the results from the low-cost video monitoring systems and the numerical modeling chain by means of SWAN and XBeach to accurately simulate and predict the swash zone processes.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/nLGNneJzmIU

2018 ◽  
Vol 10 (2) ◽  
pp. 49 ◽  
Author(s):  
Raimundo Ibaceta ◽  
Rafael Almar ◽  
Patricio Catalán ◽  
Chris Blenkinsopp ◽  
Luis Almeida ◽  
...  

2021 ◽  
Author(s):  
Paola Emilia Souto Ceccon ◽  
Paolo Ciavola ◽  
Clara Armaroli

<p>Shoreline variability is a key factor in coastal morphodynamic studies. Beaches act as natural buffers to wave energy, protecting the areas behind them from damage and flooding. In the last decade, remote sensing techniques (video monitoring, shore-based radar, airborne LIDAR, AUVs) are widely applied in coastal studies and several algorithms for shoreline detection have been developed to extract the so called Satellite Derived Shorelines (SDS). Multispectral satellites provide images that cover large areas with high spatial and temporal resolution allowing to perform a near real-time analysis of shorelines worldwide. The main techniques applied to EO-derived images are either manual shoreline detection or image-processing techniques. There are several open source algorithms (e.g. SHOREX and CoastSat) for shoreline detection at sub-pixel level, using available free open-source multispectral images (Landsat and Sentinel constellations). Both algorithms use the three visible bands, the near infrared band, and the short-wave infrared band.</p><p>In this study we tested the performance of the CoastSat algorithm on two different microtidal beaches of the Italian Adriatic coast (Emilia-Romagna and Marche Regions): Punta Marina (PM) and Sirolo (SIR). While PM is a typical intermediate fine sandy beach, SIR is a mixed coarse sand-gravel reflective one. Their mean foreshore slopes are respectively 0.09 and 0.16. At PM, SDS were compared with RTK-DGPS surveyed shorelines measured following the upper limit of the swash zone. The surveys were coincident with Landsat-5, Landsat-7 and Sentinel-2 satellite overpasses on 26/05/2011, 21/01/2020 and 13/02/2020. In the SIR beach case, the SDS were compared with those obtained by a video monitoring station, after manual mapping on variance images on 09/05/2010, 18/04/2011 and 29/06/2011, coincident with Landsat-5 and Landsat-7 overpasses. CoastSat detects the shoreline by classifying the pixels images into four categories (water, white-water, sand and other land features) using a Multilayer Perceptron. As the default settings may not be suitable for every beach, due to different luminosity conditions and sand colour, we specifically trained the classifier with PM and SIR images. The influence on the identification of the SDS shorelines by the run-up extent and beach state was evaluated.</p><p>The obtained RMSE ranges between ~ 6.5 and 14 m at both sites, comparable to the values found by CoastSat developers, indicating that the shoreline is effectively obtained at sub-pixel level. Our results suggest that in the SIR case, the magnitude of the errors can be correlated with the hydrodynamic conditions, as they increase in pair with the run-up extension. This could be explained by the fact that on a reflective beach, with coarser sediments, waves break on the beachface and the water percolates delimiting a clear shoreline, with a distinguishable edge. This correlation was not found in PM, suggesting a bad performance in sand-water classification when the classifier has to deal with a wider swash zone with saturated sand.</p><p>The research received funding from the EU H2020 program under grant agreement 101004211-ECFAS Project.</p>


Author(s):  
Isaac Rodriguez-Padilla ◽  
Bruno Castelle ◽  
Vincent Marieu ◽  
Denis Morichon

The use of shore-based video systems has become a very popular and accessible low-cost tool for coastal monitoring given their capability to deliver continuous and high-resolution temporal data over large enough spatial scales. However, the reliability of the final image products can be compromised by external factors, sometimes overlooked, that can alter the image geometry over time. In particular, unwanted camera movement, produced either by thermal or mechanical effects, can lead to significant geo-rectification errors if not properly corrected. This study addresses an alternative straightforward method to stabilize an either continuous or subsampled image sequence based on state-of-the-art techniques and available routines.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/xX1CrvPQpK8


2021 ◽  
Vol 13 (14) ◽  
pp. 2795
Author(s):  
Gonzalo Simarro ◽  
Daniel Calvete ◽  
Paola Souto

Following the path set out by the “Argus” project, video monitoring stations have become a very popular low cost tool to continuously monitor beaches around the world. For these stations to be able to offer quantitative results, the cameras must be calibrated. Cameras are typically calibrated when installed, and, at best, extrinsic calibrations are performed from time to time. However, intra-day variations of camera calibration parameters due to thermal factors, or other kinds of uncontrolled movements, have been shown to introduce significant errors when transforming the pixels to real world coordinates. Departing from well-known feature detection and matching algorithms from computer vision, this paper presents a methodology to automatically calibrate cameras, in the intra-day time scale, from a small number of manually calibrated images. For the three cameras analyzed here, the proposed methodology allows for automatic calibration of >90% of the images in favorable conditions (images with many fixed features) and ∼40% in the worst conditioned camera (almost featureless images). The results can be improved by increasing the number of manually calibrated images. Further, the procedure provides the user with two values that allow for the assessment of the expected quality of each automatic calibration. The proposed methodology, here applied to Argus-like stations, is applicable e.g., in CoastSnap sites, where each image corresponds to a different camera.


Author(s):  
I Made Oka Widyantara ◽  
I Made Dwi Asana Putra ◽  
Ida Bagus Putu Adnyana

This paper intends to explain the development of Coastal Video Monitoring System (CoViMoS) with the main characteristics including low-cost and easy implementation. CoViMoS characteristics have been realized using the device IP camera for video image acquisition, and development of software applications with the main features including detection of shoreline and it changes are automatically. This capability was based on segmentation and classification techniques based on data mining. Detection of shoreline is done by segmenting a video image of the beach, to get a cluster of objects, namely land, sea and sky, using Self Organizing Map (SOM) algorithms. The mechanism of classification is done using K-Nearest Neighbor (K-NN) algorithms to provide the class labels to objects that have been generated on the segmentation process. Furthermore, the classification of land used as a reference object in the detection of costline. Implementation CoViMoS system for monitoring systems in Cucukan Beach, Gianyar regency, have shown that the developed system is able to detect the shoreline and its changes automatically.


2018 ◽  
Vol 44 ◽  
pp. 00006 ◽  
Author(s):  
Marek Badura ◽  
Piotr Batog ◽  
Anetta Drzeniecka-Osiadacz ◽  
Piotr Modzel

Monitoring systems are needed to obtain information about particulate matter (PM) concentrations and to make such information accessible to the public. Small, low-cost, optical sensors could be used to improve the spatial and temporal resolution of PM data. The paper presents results of collocated comparison of four low-cost PM sensors and TEOM analyser, conducted from 20-08-2017 to 24-12-2017 in Wrocław, Poland. Plantower PMS7003 and Nova Fitness SDS011 sensors proved to be the best in terms of precision and were linearly correlated with TEOM data. Alphasense OPC-N2 sensors exhibited only moderate precision and linearity. Winsen ZH03A sensors had low repeatability between units and only one copy demonstrated good operation possibilities. All tested sensors had a bias in relation to PM2.5 concentrations obtained from TEOM.


Author(s):  
Ken R. Tefertiller

Agriculture is one of the Nation’s most efficient industries. The cost of living for the average consumer would be considerably higher today without the low cost of food supplied by United States agriculture. This is particularly significant at a time when we hear so much about poverty in the United States and in other countries. Had it not been for the extremely low costs of food, there would be many more poverty stricken families today. Paper published with permission.


Author(s):  
H. B. Chi ◽  
M. F. N. Tajuddin ◽  
N. H. Ghazali ◽  
A. Azmi ◽  
M. U. Maaz

<span>This paper presents a low-cost PV current-voltage or <em>I-V</em> curve tracer that has the Internet of Things (IoT) capability. Single ended primary inductance converter (SEPIC) is used to develop the <em>I-V</em> tracer, which is able to cope with rapidly changing irradiation conditions. The <em>I-V</em> tracer control software also has the ability to automatically adapt to the varying irradiation conditions. The performance of the <em>I-V</em> curve tracer is evaluated and verified using simulation and experimental tests.</span>


Sign in / Sign up

Export Citation Format

Share Document