Pressure-driven particle focusing in lab-on-a-chip flow cytometers: The choice between sheath-assisted and inertial focusing

Author(s):  
Nishtha Panwar ◽  
Peiyi Song ◽  
Ken-Tye Yong ◽  
Swee Chuan Tjin
Lab on a Chip ◽  
2021 ◽  
Author(s):  
Shohei Kishimoto ◽  
Makusu Tsutsui ◽  
Kazumichi Yokota ◽  
Masateru Taniguchi

Electrokinetics in octet nanochannels was demonstrated to enable particle focusing via inertial effects to accurate single-nanoparticle zeta-potential measurements.


2013 ◽  
Vol 42 ◽  
pp. 586-591 ◽  
Author(s):  
Joanna Skommer ◽  
Jin Akagi ◽  
Kazuo Takeda ◽  
Yuu Fujimura ◽  
Khashayar Khoshmanesh ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Joo Young Kwon ◽  
Dong-Ki Lee ◽  
Jungwoo Kim ◽  
Young Hak Cho

AbstractIn this study, particle focusing phenomena are studied in parallelogram and rectangular cross-sectioned microchannels of varying aspect ratio. In contrast to prior work the microchannels were fabricated using anisotropic wet etching of a Si wafer, plasma bonding, and self-alignment between the Si channel and the PDMS mold. It is shown that the inertial focusing points of the fabricated microchannels of parallelogram and rectangular cross-section were modified as the aspect ratio of the microchannels changed. The particle focusing points of the parallelogram profiled microchannel are compared with those of the rectangular microchannel through experimental measurements and CFD simulation. It is shown that particles can be efficiently focused and separated at a relatively low Reynolds number using a parallelogram profiled microchannel with a low aspect ratio.


Soft Matter ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. 3096-3105
Author(s):  
Pengju Yin ◽  
Lei Zhao ◽  
Zezhou Chen ◽  
Zhiqiang Jiao ◽  
Hongyan Shi ◽  
...  

Inertial microfluidic chips were fabricated using commercial 3D-printers and the particle focusing was implemented in channels.


2022 ◽  
Vol 32 (2) ◽  
pp. 025007
Author(s):  
Shuang Chen ◽  
Zongqian Shi ◽  
Jiajia Sun ◽  
Shenli Jia ◽  
Mingjie Zhong ◽  
...  

Abstract Inertial microfluidic has been widely applied to manipulate particles or bio-sample based on the inertial lift force and Dean Vortices. This technology provides significant advantages over conventional technologies, including simple structure, high throughput and freedom from an external field. Among many inertial microfluidic systems, the straight microchannel is commonly used to produce inertial focusing, which is a phenomenon that particles or cells are aligned and separated based on their size under the influence of inertial lift force. Besides the inertial lift force, flow drag forces induced by the geometrical structures of microchannel can also affect particle focusing. Herein, a split-recombination microchannel, consisting of curved and straight channels, is proposed to focus and separate particles at high flow rate. As compared with the straight channel, the particle focusing in the split-recombination channel is greatly improved, which results from the combined effects of the inertial lift force, the curvature-induced Dean drag force and the structure of split and recombination. Moreover, the distribution of different-sized particles in designed microchannel is investigated. The results indicate that the proposed microchannel not only enhances the particle focusing but also enables the separation of different-sized particles with high throughput. Finally, it is discovered that the larger length of straight channel and curvature radius of curved channel can result in a more efficient particle separation. Another important feature of designed split-recombination microchannel is that it can be arranged in parallel to handle large-volume samples, holding great potential in lab-on-a-chip applications.


2015 ◽  
Vol 25 (4) ◽  
pp. 045002 ◽  
Author(s):  
D Czurratis ◽  
Y Beyl ◽  
S Zinober ◽  
F Lärmer ◽  
R Zengerle

2010 ◽  
Vol 97 (9) ◽  
pp. 093704 ◽  
Author(s):  
Sung Hwan Cho ◽  
Wen Qiao ◽  
Frank S. Tsai ◽  
Kenichi Yamashita ◽  
Yu-Hwa Lo

Author(s):  
Arvind Chandrasekaran ◽  
Muthukumaran Packirisamy

In this work, a Piezo actuated Valveless micropump is proposed for applications in Micro-Total Analysis Systems (μTAS) and Lab-on-a-Chip. Flow rectification in the micropump has been brought about with the use of a diffuser element. The device is fabricated on PDMS-Glass substrate with the glass acting as the diaphragm. A PZT disc is integrated with the setup for actuation. The micropump has been characterized for its dynamic behavior, flow characteristics, and pressure. It was found that the maximum flow rate for the micropump was obtained at low frequency which makes it usable for practical μTAS applications.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1242
Author(s):  
Hiroshi Yamashita ◽  
Takeshi Akinaga ◽  
Masako Sugihara-Seki

The continuous separation and filtration of particles immersed in fluid flows are important interests in various applications. Although the inertial focusing of particles suspended in a duct flow is promising in microfluidics, predicting the focusing positions depending on the parameters, such as the shape of the duct cross-section and the Reynolds number (Re) has not been achieved owing to the diversity of the inertial-focusing phenomena. In this study, we aimed to elucidate the variation of the inertial focusing depending on Re in rectangular duct flows. We performed a numerical simulation of the lift force exerted on a spherical particle flowing in a rectangular duct and determined the lift-force map within the duct cross-section over a wide range of Re. We estimated the particle trajectories based on the lift map and Stokes drag, and identified the particle-focusing points appeared in the cross-section. For an aspect ratio of the duct cross-section of 2, we found that the blockage ratio changes transition structure of particle focusing. For blockage ratios smaller than 0.3, particles focus near the centres of the long sides of the cross-section at low Re and near the centres of both the long and short sides at relatively higher Re. This transition is expressed as a subcritical pitchfork bifurcation. For blockage ratio larger than 0.3, another focusing pattern appears between these two focusing regimes, where particles are focused on the centres of the long sides and at intermediate positions near the corners. Thus, there are three regimes; the transition between adjacent regimes at lower Re is found to be expressed as a saddle-node bifurcation and the other transition as a supercritical pitchfork bifurcation.


Sign in / Sign up

Export Citation Format

Share Document