Seneca: Fast and Low Cost Hyperparameter Search for Machine Learning Models

Author(s):  
Michael Zhang ◽  
Chandra Krintz ◽  
Markus Mock ◽  
Rich Wolski
Author(s):  
Pratyush Kaware

In this paper a cost-effective sensor has been implemented to read finger bend signals, by attaching the sensor to a finger, so as to classify them based on the degree of bent as well as the joint about which the finger was being bent. This was done by testing with various machine learning algorithms to get the most accurate and consistent classifier. Finally, we found that Support Vector Machine was the best algorithm suited to classify our data, using we were able predict live state of a finger, i.e., the degree of bent and the joints involved. The live voltage values from the sensor were transmitted using a NodeMCU micro-controller which were converted to digital and uploaded on a database for analysis.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2016
Author(s):  
Claudia Gonzalez Viejo ◽  
Eden Tongson ◽  
Sigfredo Fuentes

Aroma is one of the main attributes that consumers consider when appreciating and selecting a coffee; hence it is considered an important quality trait. However, the most common methods to assess aroma are based on expensive equipment or human senses through sensory evaluation, which is time-consuming and requires highly trained assessors to avoid subjectivity. Therefore, this study aimed to estimate the coffee intensity and aromas using a low-cost and portable electronic nose (e-nose) and machine learning modeling. For this purpose, triplicates of six commercial coffee samples with different intensity levels were used for this study. Two machine learning models were developed based on artificial neural networks using the data from the e-nose as inputs to (i) classify the samples into low, medium, and high-intensity (Model 1) and (ii) to predict the relative abundance of 45 different aromas (Model 2). Results showed that it is possible to estimate the intensity of coffees with high accuracy (98%; Model 1), as well as to predict the specific aromas obtaining a high correlation coefficient (R = 0.99), and no under- or over-fitting of the models were detected. The proposed contactless, nondestructive, rapid, reliable, and low-cost method showed to be effective in evaluating volatile compounds in coffee, which is a potential technique to be applied within all stages of the production process to detect any undesirable characteristics on–time and ensure high-quality products.


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


2021 ◽  
Author(s):  
Norberto Sánchez-Cruz ◽  
Jose L. Medina-Franco

<p>Epigenetic targets are a significant focus for drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represents a large amount of structure-activity relationships that has not been exploited thus far for the development of predictive models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 26318 compounds with a quantitative measure of biological activity for 55 protein targets with epigenetic activity. Through a systematic comparison of machine learning models trained on molecular fingerprints of different design, we built predictive models with high accuracy for the epigenetic target profiling of small molecules. The models were thoroughly validated showing mean precisions up to 0.952 for the epigenetic target prediction task. Our results indicate that the herein reported models have considerable potential to identify small molecules with epigenetic activity. Therefore, our results were implemented as freely accessible and easy-to-use web application.</p>


2020 ◽  
Author(s):  
Shreya Reddy ◽  
Lisa Ewen ◽  
Pankti Patel ◽  
Prerak Patel ◽  
Ankit Kundal ◽  
...  

<p>As bots become more prevalent and smarter in the modern age of the internet, it becomes ever more important that they be identified and removed. Recent research has dictated that machine learning methods are accurate and the gold standard of bot identification on social media. Unfortunately, machine learning models do not come without their negative aspects such as lengthy training times, difficult feature selection, and overwhelming pre-processing tasks. To overcome these difficulties, we are proposing a blockchain framework for bot identification. At the current time, it is unknown how this method will perform, but it serves to prove the existence of an overwhelming gap of research under this area.<i></i></p>


Sign in / Sign up

Export Citation Format

Share Document