Machine Learning Models for Finger Bend Evaluation using Implemented Low cost Flex Sensor

Author(s):  
Pratyush Kaware

In this paper a cost-effective sensor has been implemented to read finger bend signals, by attaching the sensor to a finger, so as to classify them based on the degree of bent as well as the joint about which the finger was being bent. This was done by testing with various machine learning algorithms to get the most accurate and consistent classifier. Finally, we found that Support Vector Machine was the best algorithm suited to classify our data, using we were able predict live state of a finger, i.e., the degree of bent and the joints involved. The live voltage values from the sensor were transmitted using a NodeMCU micro-controller which were converted to digital and uploaded on a database for analysis.

Witheverypassingsecondsocialnetworkcommunityisgrowingrapidly,becauseofthat,attackershaveshownkeeninterestinthesekindsofplatformsandwanttodistributemischievouscontentsontheseplatforms.Withthefocus on introducing new set of characteristics and features forcounteractivemeasures,agreatdealofstudieshasresearchedthe possibility of lessening the malicious activities on social medianetworks. This research was to highlight features for identifyingspammers on Instagram and additional features were presentedto improve the performance of different machine learning algorithms. Performance of different machine learning algorithmsnamely, Multilayer Perceptron (MLP), Random Forest (RF), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM)were evaluated on machine learning tools named, RapidMinerand WEKA. The results from this research tells us that RandomForest (RF) outperformed all other selected machine learningalgorithmsonbothselectedmachinelearningtools.OverallRandom Forest (RF) provided best results on RapidMiner. Theseresultsareusefulfortheresearcherswhoarekeentobuildmachine learning models to find out the spamming activities onsocialnetworkcommunities.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Morshedul Bari Antor ◽  
A. H. M. Shafayet Jamil ◽  
Maliha Mamtaz ◽  
Mohammad Monirujjaman Khan ◽  
Sultan Aljahdali ◽  
...  

Alzheimer’s disease has been one of the major concerns recently. Around 45 million people are suffering from this disease. Alzheimer’s is a degenerative brain disease with an unspecified cause and pathogenesis which primarily affects older people. The main cause of Alzheimer’s disease is Dementia, which progressively damages the brain cells. People lost their thinking ability, reading ability, and many more from this disease. A machine learning system can reduce this problem by predicting the disease. The main aim is to recognize Dementia among various patients. This paper represents the result and analysis regarding detecting Dementia from various machine learning models. The Open Access Series of Imaging Studies (OASIS) dataset has been used for the development of the system. The dataset is small, but it has some significant values. The dataset has been analyzed and applied in several machine learning models. Support vector machine, logistic regression, decision tree, and random forest have been used for prediction. First, the system has been run without fine-tuning and then with fine-tuning. Comparing the results, it is found that the support vector machine provides the best results among the models. It has the best accuracy in detecting Dementia among numerous patients. The system is simple and can easily help people by detecting Dementia among them.


Author(s):  
Agbassou Guenoupkati ◽  
Adekunlé Akim Salami ◽  
Mawugno Koffi Kodjo ◽  
Kossi Napo

Time series forecasting in the energy sector is important to power utilities for decision making to ensure the sustainability and quality of electricity supply, and the stability of the power grid. Unfortunately, the presence of certain exogenous factors such as weather conditions, electricity price complicate the task using linear regression models that are becoming unsuitable. The search for a robust predictor would be an invaluable asset for electricity companies. To overcome this difficulty, Artificial Intelligence differs from these prediction methods through the Machine Learning algorithms which have been performing over the last decades in predicting time series on several levels. This work proposes the deployment of three univariate Machine Learning models: Support Vector Regression, Multi-Layer Perceptron, and the Long Short-Term Memory Recurrent Neural Network to predict the electricity production of Benin Electricity Community. In order to validate the performance of these different methods, against the Autoregressive Integrated Mobile Average and Multiple Regression model, performance metrics were used. Overall, the results show that the Machine Learning models outperform the linear regression methods. Consequently, Machine Learning methods offer a perspective for short-term electric power generation forecasting of Benin Electricity Community sources.


Informatics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 79
Author(s):  
Enas Elgeldawi ◽  
Awny Sayed ◽  
Ahmed R. Galal ◽  
Alaa M. Zaki

Machine learning models are used today to solve problems within a broad span of disciplines. If the proper hyperparameter tuning of a machine learning classifier is performed, significantly higher accuracy can be obtained. In this paper, a comprehensive comparative analysis of various hyperparameter tuning techniques is performed; these are Grid Search, Random Search, Bayesian Optimization, Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). They are used to optimize the accuracy of six machine learning algorithms, namely, Logistic Regression (LR), Ridge Classifier (RC), Support Vector Machine Classifier (SVC), Decision Tree (DT), Random Forest (RF), and Naive Bayes (NB) classifiers. To test the performance of each hyperparameter tuning technique, the machine learning models are used to solve an Arabic sentiment classification problem. Sentiment analysis is the process of detecting whether a text carries a positive, negative, or neutral sentiment. However, extracting such sentiment from a complex derivational morphology language such as Arabic has been always very challenging. The performance of all classifiers is tested using our constructed dataset both before and after the hyperparameter tuning process. A detailed analysis is described, along with the strengths and limitations of each hyperparameter tuning technique. The results show that the highest accuracy was given by SVC both before and after the hyperparameter tuning process, with a score of 95.6208 obtained when using Bayesian Optimization.


Author(s):  
Angana Saikia ◽  
Vinayak Majhi ◽  
Masaraf Hussain ◽  
Sudip Paul ◽  
Amitava Datta

Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.


Author(s):  
S. R. Mani Sekhar ◽  
G. M. Siddesh

Machine learning is one of the important areas in the field of computer science. It helps to provide an optimized solution for the real-world problems by using past knowledge or previous experience data. There are different types of machine learning algorithms present in computer science. This chapter provides the overview of some selected machine learning algorithms such as linear regression, linear discriminant analysis, support vector machine, naive Bayes classifier, neural networks, and decision trees. Each of these methods is illustrated in detail with an example and R code, which in turn assists the reader to generate their own solutions for the given problems.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7096
Author(s):  
Julianna P. Kadar ◽  
Monique A. Ladds ◽  
Joanna Day ◽  
Brianne Lyall ◽  
Culum Brown

Movement ecology has traditionally focused on the movements of animals over large time scales, but, with advancements in sensor technology, the focus can become increasingly fine scale. Accelerometers are commonly applied to quantify animal behaviours and can elucidate fine-scale (<2 s) behaviours. Machine learning methods are commonly applied to animal accelerometry data; however, they require the trial of multiple methods to find an ideal solution. We used tri-axial accelerometers (10 Hz) to quantify four behaviours in Port Jackson sharks (Heterodontus portusjacksoni): two fine-scale behaviours (<2 s)—(1) vertical swimming and (2) chewing as proxy for foraging, and two broad-scale behaviours (>2 s–mins)—(3) resting and (4) swimming. We used validated data to calculate 66 summary statistics from tri-axial accelerometry and assessed the most important features that allowed for differentiation between the behaviours. One and two second epoch testing sets were created consisting of 10 and 20 samples from each behaviour event, respectively. We developed eight machine learning models to assess their overall accuracy and behaviour-specific accuracy (one classification tree, five ensemble learners and two neural networks). The support vector machine model classified the four behaviours better when using the longer 2 s time epoch (F-measure 89%; macro-averaged F-measure: 90%). Here, we show that this support vector machine (SVM) model can reliably classify both fine- and broad-scale behaviours in Port Jackson sharks.


2020 ◽  
pp. 147592172096715
Author(s):  
Mengyue He ◽  
Yishou Wang ◽  
Karthik Ram Ramakrishnan ◽  
Zhifang Zhang

Structural health monitoring techniques based on vibration parameters have been used to assess the internal delamination damage of fiber-reinforced polymer composites. Recently, machine learning algorithms have been adopted to solve the inverse problem of predicting delamination parameters of the delamination from natural frequency shifts. In this article, a delamination detection methodology is proposed based on the changes in multiple modes of frequencies to assess the interface, location, and size of delamination in fiber-reinforced polymer composites. Three types of machine learning algorithms including back propagation neural network, extreme learning machine, and support vector machine algorithm were adopted as inverse algorithms for assessment of the delamination parameters, with a special focus on the interface prediction. A theoretical model of fiber-reinforced polymer beam with delamination under vibration was constructed to learn how the frequencies are affected by the delaminations (“forward problem”) and to generate a database of “frequency shifts versus delamination parameters” to be used in machine learning algorithms for delamination prediction (“inverse problem”). Multiple carbon/epoxy fiber-reinforced polymer beam specimens were manufactured and measured by a laser scanning Doppler vibrometer to extract the modal frequencies. Numerical and experimental verification results have shown that support vector machine has the best prediction performance among the three machine learning algorithms, with high prediction accuracy and only requiring a small number of samples. For predicting the interface of delamination which is a discrete variable, support vector machine classification has observed better prediction accuracy and requiring less running time than regression. This study is one of the first to prove the applicability of support vector machine for structural health monitoring of delamination damage in fiber-reinforced polymer composites and has the potential to improve the prediction capability of machine learning algorithms. Another significant outcome of the study is that the interface of delamination has been predicted accurately with support vector machine.


2019 ◽  
Vol 1 (1) ◽  
pp. 384-399 ◽  
Author(s):  
Thais de Toledo ◽  
Nunzio Torrisi

The Distributed Network Protocol (DNP3) is predominately used by the electric utility industry and, consequently, in smart grids. The Peekaboo attack was created to compromise DNP3 traffic, in which a man-in-the-middle on a communication link can capture and drop selected encrypted DNP3 messages by using support vector machine learning algorithms. The communication networks of smart grids are a important part of their infrastructure, so it is of critical importance to keep this communication secure and reliable. The main contribution of this paper is to compare the use of machine learning techniques to classify messages of the same protocol exchanged in encrypted tunnels. The study considers four simulated cases of encrypted DNP3 traffic scenarios and four different supervised machine learning algorithms: Decision tree, nearest-neighbor, support vector machine, and naive Bayes. The results obtained show that it is possible to extend a Peekaboo attack over multiple substations, using a decision tree learning algorithm, and to gather significant information from a system that communicates using encrypted DNP3 traffic.


Sign in / Sign up

Export Citation Format

Share Document