Role of computational EM in radar remote sensing of water resources

Author(s):  
Mahta Moghaddam ◽  
Alireza Tabatabaeenejad ◽  
Richard Chen ◽  
Ruzbeh Akbar ◽  
Agnelo Silva
Author(s):  
Er. Tajamul Zargar

Abstract: Civil engineering is considered as the second oldest engineering discipline of the world. It deals with the design, maintenance and constructions of different structural and building elements like roads, bridges, dams etc. It comprises of many sub divisions like surveying, water resources, environment etc. Remote sensing plays a key role in acquiring and providing topographical data and 3D images. It also helps in examining existing structures and layouts. Thus remote sensing is indispensable in the field of civil engineering. This paper tries to give a brief overview of what remote sensing is and how it plays a vital role in making civil engineering more convenient, simple and efficient.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Antonio J. Mendoza-Fernández ◽  
Araceli Peña-Fernández ◽  
Luis Molina ◽  
Pedro A. Aguilera

Campo de Dalías, located in southeastern Spain, is the greatest European exponent of greenhouse agriculture. The development of this type of agriculture has led to an exponential economic development of one of the poorest areas of Spain, in a short period of time. Simultaneously, it has brought about a serious alteration of natural resources. This article will study the temporal evolution of changes in land use, and the exploitation of groundwater. Likewise, this study will delve into the technological development in greenhouses (irrigation techniques, new water resources, greenhouse structures or improvement in cultivation techniques) seeking a sustainable intensification of agriculture under plastic. This sustainable intensification also implies the conservation of existing natural areas.


2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


2021 ◽  
Vol 13 (2) ◽  
pp. 303
Author(s):  
Shi Hu ◽  
Xingguo Mo

Using the Global Land Surface Satellite (GLASS) leaf area index (LAI), the actual evapotranspiration (ETa) and available water resources in the Mekong River Basin were estimated with the Remote Sensing-Based Vegetation Interface Processes Model (VIP-RS). The relative contributions of climate variables and vegetation greening to ETa were estimated with numerical experiments. The results show that the average ETa in the entire basin increased at a rate of 1.16 mm year−2 from 1980 to 2012 (36.7% of the area met the 95% significance level). Vegetation greening contributed 54.1% of the annual ETa trend, slightly higher than that of climate change. The contributions of air temperature, precipitation and the LAI were positive, whereas contributions of solar radiation and vapor pressure were negative. The effects of water supply and energy availability were equivalent on the variation of ETa throughout most of the basin, except the upper reach and downstream Mekong Delta. In the upper reach, climate warming played a critical role in the ETa variability, while the warming effect was offset by reduced solar radiation in the Mekong Delta (an energy-limited region). For the entire basin, the available water resources showed an increasing trend due to intensified precipitation; however, in downstream areas, additional pressure on available water resources is exerted due to cropland expansion with enhanced agricultural water consumption. The results provide scientific basis for practices of integrated catchment management and water resources allocation.


2021 ◽  
Vol 205 ◽  
pp. 76-92
Author(s):  
Clara Simón de Blas ◽  
Rubén Valcarce-Diñeiro ◽  
Ana E. Sipols ◽  
Nilda Sánchez Martín ◽  
Benjamín Arias-Pérez ◽  
...  

2002 ◽  
Vol 64 (4) ◽  
pp. 317-327 ◽  
Author(s):  
Soroosh Sorooshian ◽  
Martha P. L. Whitaker ◽  
Terri S. Hogue

Sign in / Sign up

Export Citation Format

Share Document