Effect of Radiation & HEI on Flicker noise in 0.5 μm CMOS transistor

Author(s):  
Anshu Sarje ◽  
Martin Peckerar
2004 ◽  
Vol 35 (1-2) ◽  
pp. 59-66
Author(s):  
A. V. Reshetnikov ◽  
V. P. Skripov ◽  
V. P. Koverda ◽  
V. N. Skokov ◽  
N. A. Mazheiko ◽  
...  

Author(s):  
Yuk L. Tsang ◽  
Alex VanVianen ◽  
Xiang D. Wang ◽  
N. David Theodore

Abstract In this paper, we report a device model that has successfully described the characteristics of an anomalous CMOS NFET and led to the identification of a non-visual defect. The model was based on detailed electrical characterization of a transistor exhibiting a threshold voltage (Vt) of about 120mv lower than normal and also exhibiting source to drain leakage. Using a simple graphical simulation, we predicted that the anomalous device was a transistor in parallel with a resistor. It was proposed that the resistor was due to a counter doping defect. This was confirmed using Scanning Capacitance Microscopy (SCM). The dopant defect was shown by TEM imaging to be caused by a crystalline silicon dislocation.


Author(s):  
Charles Zhang ◽  
Matt Thayer ◽  
Lowell Herlinger ◽  
Greg Dabney ◽  
Manuel Gonzalez

Abstract A number of backside analysis techniques rely on the successful use of optical beams in performing backside fault isolation. In this paper, the authors have investigated the influence of the 1340 nm and 1064 nm laser wavelength on advanced CMOS transistor performance.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1563
Author(s):  
Jae Kwon Ha ◽  
Chang Kyun Noh ◽  
Jin Seop Lee ◽  
Ho Jin Kang ◽  
Yu Min Kim ◽  
...  

In this work, a multi-mode radar transceiver supporting pulse, FMCW and CW modes was designed as an integrated circuit. The radars mainly detect the targets move by using the Doppler frequency which is significantly affected by flicker noise of the receiver from several Hz to several kHz. Due to this flicker noise, the long-range detection performance of the radars is greatly reduced, and the accuracy of range to the target and velocity is also deteriorated. Therefore, we propose a transmitter that suppresses LO leakage in consideration of long-range detection, target distance, velocity, and noise figure. We also propose a receiver structure that suppresses DC offset due to image signal and LO leakage. The design was conducted with TSMC 65 nm CMOS process, and the designed and fabricated circuit consumes a current of 265 mA at 1.2 V supply voltage. The proposed transmitter confirms the LO leakage suppression of 37 dB at 24 GHz. The proposed receiver improves the noise figure by about 20 dB at 100 Hz by applying a double conversion architecture and an image rejection, and it illustrates a DC rejection of 30 dB. Afterwards, the operation of the pulse, FMCW, and CW modes of the designed radar in integrated circuit was confirmed through experiment using a test PCB.


Sign in / Sign up

Export Citation Format

Share Document