Digital noise generator based in a one-dimensional tent chaotic map on FPGA

Author(s):  
L. Palacios-Luengas ◽  
J.A. Martinez-nonthe ◽  
C. E. Rojas-Lopez ◽  
G. I. Duchen-Sanchez ◽  
R. Vazquez-Medina
2019 ◽  
Vol 1 ◽  
pp. 223-237
Author(s):  
Terlumun Gbaden

The widespread use of images in various sectors of life makes its protection increasingly necessary and important. An improvement over encryption and decryption algorithm using exponential logistic chaotic map was proposed. In this work, we adopt an encryption/decryption strategy for colour images using the exponential logistic chaotic map. The proposed encryption/decryption algorithms are implemented in MATLAB for computer simulation. The experimental results indicate that the proposed algorithms can be used successfully to encrypt/decrypt images with secret keys. The performance analysis using histogram uniformity analysis and correlation coefficient show that the algorithms give larger space, quick speed and easy to realize. The encrypted images have good encryption effect and low correlation coefficient rendering it a good candidate for confidential and secure means of transmitting image information in untrusted networks.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hongyan Zang ◽  
Yue Yuan ◽  
Xinyuan Wei

This paper proposes three types of one-dimensional piecewise chaotic maps and two types of symmetrical piecewise chaotic maps and presents five theorems. Furthermore, some examples that satisfy the theorems are constructed, and an analysis and model of the dynamic properties are discussed. The construction methods proposed in this paper have a certain generality and provide a theoretical basis for constructing a new discrete chaotic system. In addition, this paper designs a pseudorandom number generator based on piecewise chaotic map and studies its application in cryptography. Performance evaluation shows that the generator can generate high quality random sequences efficiently.


Author(s):  
Yuqing Li ◽  
Xing He ◽  
Dawen Xia

Chaotic maps with higher chaotic complexity are urgently needed in many application scenarios. This paper proposes a chaotification model based on sine and cosecant functions (CMSC) to improve the dynamic properties of existing chaotic maps. CMSC can generate a new map with higher chaotic complexity by using the existing one-dimensional (1D) chaotic map as a seed map. To discuss the performance of CMSC, the chaos properties of CMSC are analyzed based on the mathematical definition of the Lyapunov exponent (LE). Then, three new maps are generated by applying three classical 1D chaotic maps to CMSC respectively, and the dynamic behaviors of the new maps are analyzed in terms of fixed point, bifurcation diagram, sample entropy (SE), etc. The results of the analysis demonstrate that the new maps have a larger chaotic region and excellent chaotic characteristics.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Wang Xingyuan ◽  
Qin Xue ◽  
Teng Lin

We propose a novel true random number generator using mouse movement and a one-dimensional chaotic map. We utilize thex-coordinate of the mouse movement to be the length of an iteration segment of our TRNs and they-coordinate to be the initial value of this iteration segment. And, when it iterates, we perturb the parameter with the real value produced by the TRNG itself. And we find that the TRNG we proposed conquers several flaws of some former mouse-based TRNGs. At last we take experiments and test the randomness of our algorithm with the NIST statistical test suite; results illustrate that our TRNG is suitable to produce true random numbers (TRNs) on universal personal computers (PCs).


VLSI Design ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Leonardo Palacios-Luengas ◽  
Gonzalo Isaac Duchen-Sánchez ◽  
José Luis Aragón-Vera ◽  
Rubén Vázquez-Medina

This paper shows a digital noise generator designed in FPGA, based on a variant of the one-dimensional (1D) chaotic tent map (T-1D). The T-1D map is a piecewise linear 1D chaotic map that defines the statistical behavior of the generated sequences using its control parameter. In this way, the proposed noise generator is a highly competitive alternative in cryptographic systems when the statistical behavior of the sequences is closer to the uniform statistical distribution. The proposed system uses the inverted tent chaotic map (IT-1D), which has the same statistical behavior as the T-1D map. The fundamental algorithm used in this system was developed based on a 64-bit double precision format according to the numerical representation of floating point numbers defined in the IEEE-754 standard. The proposed system is analized using mechanical statistic tools and some statistical tests defined in the NIST 800-22SP (USA) standard. The main contribution of this work is the possibility of generating binary sequence of pseudorandom appearance by a procedure implemented in an FPGA device that translates real numbers to natural numbers preserving the statistical properties of sequences of real numbers that can be generated with the tent chaotic map in its original definition domain.


Sign in / Sign up

Export Citation Format

Share Document