Co-design of Discrete Linear Quadratic Regulator and Resource Scheduling for Priority-Driven Networked Control Systems

Author(s):  
Yun Niu ◽  
Xuguang Wu ◽  
Huizhen Yang ◽  
Huixiang Zhang
2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Jie Jiang ◽  
Changlin Ma

In networked control systems with multi-step delay, long time-delay causes vacant sampling and controller design difficulty. In order to solve the above problems, comprehensive control methods are proposed in this paper. Time-delay compensation control and linear-quadratic-Guassian (LQG) optimal control are adopted and the systems switch different controllers between two different states. LQG optimal controller is used with probability1-αin normal state, which is shown to render the systems mean square exponentially stable. Time-delay compensation controller is used with probabilityαin abnormal state to compensate vacant sampling and long time-delay. In addition, a buffer window is established at the actuator of the systems to store some history control inputs which are used to estimate the control state of present sampling period under the vacant sampling cases. The comprehensive control methods simplify control design which is easier to be implemented in engineering. The performance of the systems is also improved. Simulation results verify the validity of the proposed theory.


2021 ◽  
Author(s):  
Peng Wu ◽  
Chenchen Fu ◽  
Tianyu Wang ◽  
Minming Li ◽  
Yingchao Zhao ◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 172988142091376
Author(s):  
Xiao Lu ◽  
Qiyan Zhang ◽  
Xiao Liang ◽  
Haixia Wang ◽  
Chunyang Sheng ◽  
...  

This article focuses on the problem of optimal linear quadratic Gaussian control for networked control systems with multiple delays and packet dropouts. The main contributions are twofold. Firstly, based on the introduced maximum principle for linear quadratic Gaussian system with multiple input delays and packet dropouts, a nonhomogeneous relationship between the state and costate is obtained, which is the key technical tool to solve the problem. Secondly, a necessary and sufficient condition for the optimal networked control problem is given in virtue of the coupled Riccati equations, and the explicit expression of the optimal controller is presented. Numerical examples are shown to illustrate the proposed algorithm.


2020 ◽  
Vol 9 (3) ◽  
pp. 43
Author(s):  
Mohammad H. Mamduhi ◽  
Jaya Prakash Champati ◽  
James Gross ◽  
Karl H. Johansson

In the design of multi-loop Networked Control Systems (NCSs), wherein each control system is characterized by heterogeneous dynamics and associated with a certain set of timing specifications, appropriate metrics need to be employed for the synthesis of control and networking policies to efficiently respond to the requirements of each control loop. The majority of the design approaches for sampling, scheduling, and control policies include either time-based or event-based metrics to perform pertinent actions in response to the changes of the parameters of interest. We specifically focus in this article on Age-of-Information (AoI) as a recently-developed time-based metric and threshold-based triggering function as a generic Event-Triggered (ET) metric. We consider multiple heterogeneous stochastic linear control systems that close their feedback loops over a shared communication network. We investigate the co-design across the NCS and discuss the pros and cons with the AoI and ET approaches in terms of asymptotic control performance measured by Linear-Quadratic Gaussian (LQG) cost functions. In particular, sampling and scheduling policies combining AoI and stochastic ET metrics are proposed. It is argued that pure AoI functions that generate decision variables solely upon minimizing the average age irrespective of control systems dynamics may not be able to improve the overall NCS performance even compared with purely randomized policies. Our theoretical analysis is validated through several simulation scenarios.


Author(s):  
Hyun-Chul Yi ◽  
Cheol-Jin An ◽  
Joon-Young Choi

In this study, we design a state predictor-based output feedback controller that compensates for unavoidable time-varying network delays in networked control systems (NCSs) over Wi-Fi networks. We model time-varying network delays as timevarying input delays of NCSs over Wi-Fi networks. The designed controller consists of a linear quadratic regulator (LQR), a full-order observer, and a time-varying stepahead state predictor. The state predictor plays a key role in compensating for the time-varying input delay by providing the LQR with an estimation of future states ahead by the current network delay time. The time-varying network delays are acquired in real time by measuring the time differences between sent and received control data packets. We verify the stability and compensation performance of the designed controller by performing extensive experiments for an NCS in which a rotary inverted pendulum is controlled over Wi-Fi networks.


Sign in / Sign up

Export Citation Format

Share Document