Marginal self-organization: a model of the role of executive processes in learning

Author(s):  
R. Viviani
2018 ◽  
pp. 1060-1068
Author(s):  
Galina A. Dvoenosova ◽  

The article assesses synergetic theory of document as a new development in document science. In information society the social role of document grows, as information involves all members of society in the process of documentation. The transformation of document under the influence of modern information technologies increases its interest to representatives of different sciences. Interdisciplinary nature of document as an object of research leads to an ambiguous interpretation of its nature and social role. The article expresses and contends the author's views on this issue. In her opinion, social role of document is incidental to its being a main social tool regulating the life of civilized society. Thus, the study aims to create a scientific theory of document, explaining its nature and social role as a tool of social (goal-oriented) action and social self-organization. Substantiation of this idea is based on application of synergetics (i.e., universal theory of self-organization) to scientific study of document. In the synergetic paradigm, social and historical development is seen as the change of phases of chaos and order, and document is considered a main tool that regulates social relations. Unlike other theories of document, synergetic theory studies document not as a carrier and means of information transfer, but as a unique social phenomenon and universal social tool. For the first time, the study of document steps out of traditional frameworks of office, archive, and library. The document is placed on the scales with society as a global social system with its functional subsystems of politics, economy, culture, and personality. For the first time, the methods of social sciences and modern sociological theories are applied to scientific study of document. This methodology provided a basis for theoretical vindication of nature and social role of document as a tool of social (goal-oriented) action and social self-organization. The study frames a synergetic theory of document with methodological foundations and basic concepts, synergetic model of document, laws of development and effectiveness of document in the social continuum. At the present stage of development of science, it can be considered the highest form of theoretical knowledge of document and its scientific explanatory theory.


2006 ◽  
Author(s):  
A. P. Napartovich ◽  
N. N. Elkin ◽  
V. N. Troshchieva ◽  
D. V. Vysotsky

2011 ◽  
Vol 1354 ◽  
Author(s):  
Jean Paul Allain ◽  
Osman El-Atwani ◽  
Alex Cimaroli ◽  
Daniel L. Rokusek ◽  
Sami Ortoleva ◽  
...  

ABSTRACTIon-beam sputtering (IBS) has been studied as a means for scalable, mask-less nanopatterning of surfaces. Patterning at the nanoscale has been achieved for numerous types of materials including: semiconductors, metals and insulators. Although much work has been focused on tailoring nanopatterning by systematic ion-beam parameter manipulation, limited work has addressed elucidating on the underlying mechanisms for self-organization of multi-component surfaces. In particular there has been little attention to correlate the surface chemistry variation during ion irradiation with the evolution of surface morphology and nanoscale self-organization. Moreover the role of surface impurities on patterning is not well known and characterization during the time-scale of modification remains challenging. This work summarizes an in-situ approach to characterize the evolution of surface chemistry during irradiation and its correlation to surface nanopatterning for a variety of multi-components surfaces. The work highlights the importance and role of surface impurities in nanopatterning of a surface during low-energy ion irradiation. In particular, it shows the importance of irradiation-driven mechanisms in GaSb(100) nanopatterning by low-energy ions and how the study of these systems can be impacted by oxide formation.


2018 ◽  
Author(s):  
Carol A. Casey ◽  
Paul Thomes ◽  
Sonia Manca ◽  
Jean-Jack M. Riethoven ◽  
Jennifer Clarke ◽  
...  

AbstractGolgi undergoes disorganization in response to the drugs or alcohol, but it is able to restore compact structure under recovery. This self-organization mechanism remains mostly elusive, as does the role of giantin, the largest Golgi matrix dimeric protein. Here, we found that in cells treated with Brefeldin A (BFA) or ethanol (EtOH), Golgi disassembly is associated with giantin de-dimerization, which was restored to the dimer form after BFA or EtOH washout. Cells lacking giantin are disabled for the restoration of the classical ribbon Golgi, and they demonstrate altered trafficking of proteins to the cell surface. The fusion of the nascent Golgi membranes is mediated by the cross-membrane interaction of Rab6a GTPase and giantin. Giantin is involved in the formation of long intercisternal connections, which in giantin-depleted cells was replaced by the short bridges that formed via oligomerization of GRASP65. This phenomenon occurs in advanced prostate cancer cells, in which a fragmented Golgi phenotype is maintained by the dimerization of GRASP65. Thus, we provide a model of Golgi Renaissance, which is impaired in aggressive prostate cancer.


2018 ◽  
Vol 2 (1) ◽  
pp. 31 ◽  
Author(s):  
Norbert Fenzl

How order emerges from noise? How higher complexity arises from lower complexity? For what reason a certain number of open systems start interacting in a coherent way, producing new structures, building up cohesion and new structural boundaries? To answer these questions we need to precise the concepts we use to describe open and complex systems and the basic driving forces of self-organization.   We assume that self-organization processes are related to the flow and throughput of Energy and Matter and the production of system-specific Information. These two processes are intimately linked together: Energy and Material flows are the fundamental carriers of signs, which are processed by the internal structure of the system to produce system-specific structural Information (Is). So far, the present theoretical reflections are focused on the emergence of open systems and on the role of Energy Flows and Information in a self-organizing process. Based on the assumption that Energy, Mass and Information are intrinsically linked together and are fundamental aspects of the Universe, we discuss how they might be related to each other and how they are able to produce the emergence of new structures and systems. 


Sign in / Sign up

Export Citation Format

Share Document