Effect of pulse width on dynamic characteristics of high voltage IGBTs

Author(s):  
John F. Donlon ◽  
Eric R. Motto ◽  
Eugen Wiesner ◽  
Eugen Stumpf ◽  
Shinichi Iura ◽  
...  
Author(s):  
M.I. Yalandin ◽  
K.A. Sharypov ◽  
V.G. Shpak ◽  
S.A. Shunailov ◽  
A.G. Reutova ◽  
...  

2010 ◽  
Vol 22 (4) ◽  
pp. 787-790
Author(s):  
方进勇 Fang Jingyong ◽  
江伟华 Jiang Weihua ◽  
黄文华 Huang Wenhua

Author(s):  
K. Ng ◽  
C. Y. Ching ◽  
J. S. Cotton

The objectives of this study are (i) to determine the transient phase redistributions of a two-phase flow in a smooth horizontal annular channel by applying high voltage pulses to induce electric fields and (ii) to quantify the resultant changes in the condensation heat transfer. The experiments were performed using refrigerant R-134a flowing in a tube that was cooled on the outside by a counter-current flow of water. The electric fields are established by applying high voltage to a concentric rod electrode inside a grounded tube. The effect of the electrohydrodynamic (EHD) forces on the changes to the initial stratified/stratified wavy flow pattern was visualized using a high speed camera. The EHD effect results in the redistribution of the liquid-vapour phase within the channel and unique flow structures, such as twisted liquid cones and entrained droplets, are observed. These structures only appear during the initial application of EHD and are absent in the steady state flow pattern. Experiments were performed using a 8kV pulse width modulated (PWM) signal with duty cycles ranging from 0–100% to evaluate the heat transfer and pressure drop characteristics of the transient EHD flow patterns. The resultant heat transfer increased with the duty cycle to approximately 2.7-fold at a low mass flux (45–55kg/m2s) and 1.2-fold at a high mass flux (110kg/m2s). The enhancement was higher as the pulse width was increased.


SPE Journal ◽  
2020 ◽  
Vol 25 (05) ◽  
pp. 2220-2233
Author(s):  
Weian Huang ◽  
Ming Lei ◽  
Jingwen Wang ◽  
Kaihe Lv ◽  
Lin Jiang ◽  
...  

Summary The rheology of drilling fluid is commonly regulated by chemical methods. In this work, a physical method of a high-frequency and high-voltage alternating current (AC) electric field to regulate the rheological properties of water-based drilling fluid is established. The effects of the electric field on the continuous phase and dispersed phase, as well as two kinds of water-based drilling fluids, were investigated, and the response relationship among rheological properties modeled by Bingham and Herschel-Bulkley (H-B) models and electric-field parameters was explored. Results showed that water conductivity increased when voltage reached 4 kV, whereas it was restored to the original state after 3 hours in the absence of an electric field, showing a memory effect. The effect was also observed on bentonite suspension, whose plastic viscosity increased with the aid of an electric field and decreased over time. Voltage showed the greatest effect on bentonite-suspension viscosity, followed by frequency and pulse-width ratio. Under the condition of voltage of 5 kV, frequency of 5 kHz, and pulse-width ratio of 80%, there was a maximum increase of 50% in viscosity. The addition of salts caused bentonite-suspension flocculation, and electric field reduced the consistency coefficient and relieved flocculation state. When polymers were incorporated in bentonite suspension, the electric field could decrease the adsorption amount between clay particles and polymeric additives such as amphoteric and acrylamide-based polymers. For two typical drilling fluids, the voltage of an introduced electric field was the main controlling factor to change the rheological properties; their plastic viscosity and consistency coefficient both started to increase when voltage reached 4 kV.


2015 ◽  
Vol 771 ◽  
pp. 145-148 ◽  
Author(s):  
Muhammad Miftahul Munir ◽  
Dian Ahmad Hapidin ◽  
Khairurrijal

Research on nanofiber materials is actively done around the world today. Various types of nanofibers have been synthesized using an electrospinning technique. The most important component when synthesizing nanofibers using the electrospinning technique is a DC high voltage power supply. Some requirements must be fulfilled by the high voltage power supply, i.e., it must be adjustable and its output voltage reaches tens of kilovolts. This paper discusses the design and development of a high voltage power supply using a diode-split transformer (DST)-type high voltage flyback transformer (HVFBT). The DST HVFBT was chosen because of its simplicity, compactness, inexpensiveness, and easiness of finding it. A pulse-width modulation (PWM) circuit with controlling frequency and duty cycle was fed to the DST HVFBT. The high voltage power supply was characterized by the frequency and duty cycle dependences of its output voltage. Experimental results showed that the frequency and duty cycle affect the output voltage. The output voltage could be set from 1 to 18 kV by changing the duty cycle. Therefore, the nanofibers could be synthesized by employing the developed high voltage power supply.


Teknik ◽  
2020 ◽  
Vol 41 (1) ◽  
pp. 55-61
Author(s):  
Abdul Syakur ◽  
Arifin Wibisono

The application of high voltage becomes more important and wider. High voltage is needed in the process of reducing air contaminants, waste treatment, sanitation, disinfecting microorganisms, testing for insulating high voltage equipment, and transmitting electrical energy. The problem of high voltage AC generation system is still in a large scale, static, not portable, and very expensive. This paper presents an analytical design of a high-voltage AC high-frequency based on power electronic. It is portable, less expensive, and eaasier to control the amplitudo and frequency. The application of the Full Bridge Bipolar Inverter topology with the Sinusoidal Pulse Width Modulation switching method provides variable sinusoidal AC voltage outputs (Vo) on its amplitude and frequency. The Tesla Coil Transformer amplifies the amplitude in accordance with the classification of the high voltage AC in the order of Kilo Volt. The Closed Loop control system in the Bipolar Inverter Full Bridge topology provides high accuracy results between the given setting values and the actual amplitude output and the expected high-frequency AC voltage. Analysis of the SPWM switching pattern parameter settings shows stability for several loading variations


Sign in / Sign up

Export Citation Format

Share Document