Mixed Reality of Augmented Reality in Mobile Learning for Aircraft Maintenance

Author(s):  
Hong-Yi Pai
Author(s):  
Daniel Novak ◽  
Minjuan Wang ◽  
Victor Callaghan

This chapter explores the format of Augmented Reality (AR) and its use in mobile learning. It first addresses precedents and theories of mLearning that inform the discussion of AR and Virtual Reality (VR), explores the “virtuality continuum” and the concept of mixed reality, and discusses some of the technologies in the mobile-AR ecosystem. It then describes the potential uses of AR in mobile education. At the end, the authors present potential applications of mobile-AR to curation activities and provide ideas for future areas of exploration in AR-based mLearning.


2019 ◽  
Vol 2019 (1) ◽  
pp. 237-242
Author(s):  
Siyuan Chen ◽  
Minchen Wei

Color appearance models have been extensively studied for characterizing and predicting the perceived color appearance of physical color stimuli under different viewing conditions. These stimuli are either surface colors reflecting illumination or self-luminous emitting radiations. With the rapid development of augmented reality (AR) and mixed reality (MR), it is critically important to understand how the color appearance of the objects that are produced by AR and MR are perceived, especially when these objects are overlaid on the real world. In this study, nine lighting conditions, with different correlated color temperature (CCT) levels and light levels, were created in a real-world environment. Under each lighting condition, human observers adjusted the color appearance of a virtual stimulus, which was overlaid on a real-world luminous environment, until it appeared the whitest. It was found that the CCT and light level of the real-world environment significantly affected the color appearance of the white stimulus, especially when the light level was high. Moreover, a lower degree of chromatic adaptation was found for viewing the virtual stimulus that was overlaid on the real world.


2021 ◽  
Vol 11 (5) ◽  
pp. 2338
Author(s):  
Rosanna Maria Viglialoro ◽  
Sara Condino ◽  
Giuseppe Turini ◽  
Marina Carbone ◽  
Vincenzo Ferrari ◽  
...  

Simulation-based medical training is considered an effective tool to acquire/refine technical skills, mitigating the ethical issues of Halsted’s model. This review aims at evaluating the literature on medical simulation techniques based on augmented reality (AR), mixed reality (MR), and hybrid approaches. The research identified 23 articles that meet the inclusion criteria: 43% combine two approaches (MR and hybrid), 22% combine all three, 26% employ only the hybrid approach, and 9% apply only the MR approach. Among the studies reviewed, 22% use commercial simulators, whereas 78% describe custom-made simulators. Each simulator is classified according to its target clinical application: training of surgical tasks (e.g., specific tasks for training in neurosurgery, abdominal surgery, orthopedic surgery, dental surgery, otorhinolaryngological surgery, or also generic tasks such as palpation) and education in medicine (e.g., anatomy learning). Additionally, the review assesses the complexity, reusability, and realism of the physical replicas, as well as the portability of the simulators. Finally, we describe whether and how the simulators have been validated. The review highlights that most of the studies do not have a significant sample size and that they include only a feasibility assessment and preliminary validation; thus, further research is needed to validate existing simulators and to verify whether improvements in performance on a simulated scenario translate into improved performance on real patients.


2020 ◽  
Vol 4 (4) ◽  
pp. 78
Author(s):  
Andoni Rivera Pinto ◽  
Johan Kildal ◽  
Elena Lazkano

In the context of industrial production, a worker that wants to program a robot using the hand-guidance technique needs that the robot is available to be programmed and not in operation. This means that production with that robot is stopped during that time. A way around this constraint is to perform the same manual guidance steps on a holographic representation of the digital twin of the robot, using augmented reality technologies. However, this presents the limitation of a lack of tangibility of the visual holograms that the user tries to grab. We present an interface in which some of the tangibility is provided through ultrasound-based mid-air haptics actuation. We report a user study that evaluates the impact that the presence of such haptic feedback may have on a pick-and-place task of the wrist of a holographic robot arm which we found to be beneficial.


2021 ◽  
pp. 1-19
Author(s):  
Eimei Oyama ◽  
Kohei Tokoi ◽  
Ryo Suzuki ◽  
Sousuke Nakamura ◽  
Naoji Shiroma ◽  
...  

2017 ◽  
Vol 26 (1) ◽  
pp. 16-41 ◽  
Author(s):  
Jonny Collins ◽  
Holger Regenbrecht ◽  
Tobias Langlotz

Virtual and augmented reality, and other forms of mixed reality (MR), have become a focus of attention for companies and researchers. Before they can become successful in the market and in society, those MR systems must be able to deliver a convincing, novel experience for the users. By definition, the experience of mixed reality relies on the perceptually successful blending of reality and virtuality. Any MR system has to provide a sensory, in particular visually coherent, set of stimuli. Therefore, issues with visual coherence, that is, a discontinued experience of a MR environment, must be avoided. While it is very easy for a user to detect issues with visual coherence, it is very difficult to design and implement a system for coherence. This article presents a framework and exemplary implementation of a systematic enquiry into issues with visual coherence and possible solutions to address those issues. The focus is set on head-mounted display-based systems, notwithstanding its applicability to other types of MR systems. Our framework, together with a systematic discussion of tangible issues and solutions for visual coherence, aims at guiding developers of mixed reality systems for better and more effective user experiences.


Sign in / Sign up

Export Citation Format

Share Document