From augmented reality to mixed reality

Author(s):  
Hector Olmedo ◽  
Jorge Augusto
2019 ◽  
Vol 2019 (1) ◽  
pp. 237-242
Author(s):  
Siyuan Chen ◽  
Minchen Wei

Color appearance models have been extensively studied for characterizing and predicting the perceived color appearance of physical color stimuli under different viewing conditions. These stimuli are either surface colors reflecting illumination or self-luminous emitting radiations. With the rapid development of augmented reality (AR) and mixed reality (MR), it is critically important to understand how the color appearance of the objects that are produced by AR and MR are perceived, especially when these objects are overlaid on the real world. In this study, nine lighting conditions, with different correlated color temperature (CCT) levels and light levels, were created in a real-world environment. Under each lighting condition, human observers adjusted the color appearance of a virtual stimulus, which was overlaid on a real-world luminous environment, until it appeared the whitest. It was found that the CCT and light level of the real-world environment significantly affected the color appearance of the white stimulus, especially when the light level was high. Moreover, a lower degree of chromatic adaptation was found for viewing the virtual stimulus that was overlaid on the real world.


2021 ◽  
Vol 11 (5) ◽  
pp. 2338
Author(s):  
Rosanna Maria Viglialoro ◽  
Sara Condino ◽  
Giuseppe Turini ◽  
Marina Carbone ◽  
Vincenzo Ferrari ◽  
...  

Simulation-based medical training is considered an effective tool to acquire/refine technical skills, mitigating the ethical issues of Halsted’s model. This review aims at evaluating the literature on medical simulation techniques based on augmented reality (AR), mixed reality (MR), and hybrid approaches. The research identified 23 articles that meet the inclusion criteria: 43% combine two approaches (MR and hybrid), 22% combine all three, 26% employ only the hybrid approach, and 9% apply only the MR approach. Among the studies reviewed, 22% use commercial simulators, whereas 78% describe custom-made simulators. Each simulator is classified according to its target clinical application: training of surgical tasks (e.g., specific tasks for training in neurosurgery, abdominal surgery, orthopedic surgery, dental surgery, otorhinolaryngological surgery, or also generic tasks such as palpation) and education in medicine (e.g., anatomy learning). Additionally, the review assesses the complexity, reusability, and realism of the physical replicas, as well as the portability of the simulators. Finally, we describe whether and how the simulators have been validated. The review highlights that most of the studies do not have a significant sample size and that they include only a feasibility assessment and preliminary validation; thus, further research is needed to validate existing simulators and to verify whether improvements in performance on a simulated scenario translate into improved performance on real patients.


2020 ◽  
Vol 4 (4) ◽  
pp. 78
Author(s):  
Andoni Rivera Pinto ◽  
Johan Kildal ◽  
Elena Lazkano

In the context of industrial production, a worker that wants to program a robot using the hand-guidance technique needs that the robot is available to be programmed and not in operation. This means that production with that robot is stopped during that time. A way around this constraint is to perform the same manual guidance steps on a holographic representation of the digital twin of the robot, using augmented reality technologies. However, this presents the limitation of a lack of tangibility of the visual holograms that the user tries to grab. We present an interface in which some of the tangibility is provided through ultrasound-based mid-air haptics actuation. We report a user study that evaluates the impact that the presence of such haptic feedback may have on a pick-and-place task of the wrist of a holographic robot arm which we found to be beneficial.


2021 ◽  
pp. 1-19
Author(s):  
Eimei Oyama ◽  
Kohei Tokoi ◽  
Ryo Suzuki ◽  
Sousuke Nakamura ◽  
Naoji Shiroma ◽  
...  

2017 ◽  
Vol 26 (1) ◽  
pp. 16-41 ◽  
Author(s):  
Jonny Collins ◽  
Holger Regenbrecht ◽  
Tobias Langlotz

Virtual and augmented reality, and other forms of mixed reality (MR), have become a focus of attention for companies and researchers. Before they can become successful in the market and in society, those MR systems must be able to deliver a convincing, novel experience for the users. By definition, the experience of mixed reality relies on the perceptually successful blending of reality and virtuality. Any MR system has to provide a sensory, in particular visually coherent, set of stimuli. Therefore, issues with visual coherence, that is, a discontinued experience of a MR environment, must be avoided. While it is very easy for a user to detect issues with visual coherence, it is very difficult to design and implement a system for coherence. This article presents a framework and exemplary implementation of a systematic enquiry into issues with visual coherence and possible solutions to address those issues. The focus is set on head-mounted display-based systems, notwithstanding its applicability to other types of MR systems. Our framework, together with a systematic discussion of tangible issues and solutions for visual coherence, aims at guiding developers of mixed reality systems for better and more effective user experiences.


2021 ◽  
pp. 110-118
Author(s):  
Олександр Володимирович Каратанов ◽  
Андрій Миколайович Биков ◽  
Марія Вадимівна Сергієнко ◽  
Дмитро Михайлович Мірошниченко

This study examines augmented reality, which imposes on the world around us virtual objects, characters, filters, or other effects through a special camera. Currently, augmented reality is considered potential for pedagogical programs and it is beginning to gain momentum and be actively used. The use of augmented reality technology opens up new opportunities that increase productivity and efficiency in various industries, improve communication and knowledge transfer and make distance learning more comfortable and realistic. However, the factor of reducing the cost of production or the educational process due to the introduction of augmented reality is not yet fully disclosed and requires a detailed analysis, part of which is conducted in this paper. The existing types of augmented, virtual and mixed reality technologies were analyzed, their comparison was made, the current place in the market was determined, as well as their influence and role in modern education. The paper presents examples of the use of augmented reality technology in various fields, including in production, which demonstrates a significant increase in efficiency and confirms the relevance. An overview of the premises and laboratories, which now use virtual and augmented reality technologies for the educational process. The article also describes the shortcomings of the educational process, which can be corrected by introducing augmented reality technology. The economic benefit of using augmented reality in the educational process on a real example was calculated, due to which the expediency of this implementation was proved. Elements of the educational process are considered, the replacement of which with augmented reality will make education cheaper, and this means more accessible. An example of markers used for an augmented reality application in the field of aircraft construction is given. The tendency of the application of augmented reality and use in the educational process for the next years is analyzed, the branches in which it can be applied are considered and the expediency of its use is confirmed.


2021 ◽  
Vol 4 (4) ◽  
pp. 605-623
Author(s):  
Tarık Talan

Augmented reality applications in STEM education have increasing importance in recent years and it draws attention that scientific studies on this subject have gained momentum in the literature. The purpose of this research is to conduct a bibliometric analysis of studies on the use of augmented reality applications in STEM education in the literature. The Web of Science database has been used to collect the data. A total of 741 studies were accessed by going through various screening processes for the research. Content analysis and bibliometric analysis have been used in the analysis of the data. In the research, the distribution of publications by years and countries and the most published authors, journals, and countries were accessed. As a result of the research, in terms of the institutions with which the authors work, "National Taiwan University of Science Technology" ranked near the top for the number of citations and "National Taiwan Normal University" ranked near the top for the number of publications as the most productive institutions. It has been detected that "Wu, H. –K." and "Chang, H. –Y" are the most effective and productive researchers. According to the analysis conducted in the context of journals, "Computers Education" and "Interactive Learning Environments" have been the journals that contributed the most to this subject. As a result of the analysis, it was found that the co-authorship network structure is predominant in England and Spain. Concepts that become apparent in clusters in co-occurrences analysis are "augmented reality", "virtual reality", "mobile learning", "science education" and "mixed reality".


Sign in / Sign up

Export Citation Format

Share Document