Impact of slurry in Cu CMP (chemical mechanical polishing) on Cu topography of Through Silicon Vias (TSVs), re-distribution layers, and Cu exposure

Author(s):  
J. C. Chen ◽  
P. J. Tzeng ◽  
S. C. Chen ◽  
C. Y. Wu ◽  
C. C. Chen ◽  
...  
2011 ◽  
Vol 236-238 ◽  
pp. 3020-3023 ◽  
Author(s):  
Yan Gang He ◽  
Xiao Wei Gan ◽  
Wei Hong ◽  
Yi Hu ◽  
Yu Ling Liu

Chemical mechanical polishing (CMP) of Cu pattern wafer based alkaline slurry in GLSI with R(NH2)n as complexing agent was investigated. In Cu CMP procedure, it is necessary to minimize the surface dishing and erosion while maintaining good planarity. This requirements are met through the complexing agents. Based on the reaction mechanism analysis of Cu in alkaline slurry with R(NH2)n as complexing agent in CMP, the performance of Cu dishing and erosion were discussed. The results showed that the slurry stability can be improved obviously by the addition of R(NH2)n as complexing agent, both Cu1 and Cu2 have good dishing and erosion performance. Furthermore, the dishing condition of Cu2 (180-230nm) is better than that of Cu1 (280-370nm), and the erosion condition of Cu2 (230-260nm) is also better than that of Cu1 (450-500nm).


1999 ◽  
Vol 566 ◽  
Author(s):  
K. K. Christenson ◽  
C. Pizetti

Wet cleaning of wafers during the semiconductor production process often requires uniform removal of a few nanometers of material. Ideally, a single cleaning chemistry can be found that etches all exposed features at a comparable rate. Etch rates near 1 nm/min are desired for batch process and near 10 nm/min for single-wafer processes. A mixture of 500:1 DHF (dilute HF) with dissolved oxygen controlled near parts-per-million (ppm) levels has been found to meet these requirements for post copper CMP (chemical-mechanical polishing) cleans with exposed SiO2 and Cu metal.


2006 ◽  
Vol 914 ◽  
Author(s):  
Chun-Ping Liu ◽  
Yen-Shih Ho ◽  
Tien-Chen Hu ◽  
Bae-Heng Tseng

AbstractThis article shows the root cause of Cu corrosion and sulfur contamination due sulfite vapor reflow through drainpipe of load cup to the original three-step Cu CMP equipment. Now, we provide a solution which to modify the arrangement of the drainpipe in original three-step Cu CMP equipment. This is an effective implement for reduction the defects of Cu corrosion and sulfur contamination from long-term observations.


Author(s):  
Ingrid De Wolf ◽  
Ahmad Khaled ◽  
Martin Herms ◽  
Matthias Wagner ◽  
Tatjana Djuric ◽  
...  

Abstract This paper discusses the application of two different techniques for failure analysis of Cu through-silicon vias (TSVs), used in 3D stacked-IC technology. The first technique is GHz Scanning Acoustic Microscopy (GHz- SAM), which not only allows detection of defects like voids, cracks and delamination, but also the visualization of Rayleigh waves. GHz-SAM can provide information on voids, delamination and possibly stress near the TSVs. The second is a reflection-based photoelastic technique (SIREX), which is shown to be very sensitive to stress anisotropy in the Si near TSVs and as such also to any defect affecting this stress, such as delamination and large voids.


2021 ◽  
Vol 11 (10) ◽  
pp. 4358
Author(s):  
Hanchul Cho ◽  
Taekyung Lee ◽  
Doyeon Kim ◽  
Hyoungjae Kim

The uniformity of the wafer in a chemical mechanical polishing (CMP) process is vital to the ultra-fine and high integration of semiconductor structures. In particular, the uniformity of the polishing pad corresponding to the tool directly affects the polishing uniformity and wafer shape. In this study, the profile shape of a CMP pad was predicted through a kinematic simulation based on the trajectory density of the diamond abrasives of the diamond conditioner disc. The kinematic prediction was found to be in good agreement with the experimentally measured pad profile shape. Based on this, the shape error of the pad could be maintained within 10 μm even after performing the pad conditioning process for more than 2 h, through the overhang of the conditioner.


Author(s):  
Peili Gao ◽  
Tingting Liu ◽  
Zhenyu Zhang ◽  
Fanning Meng ◽  
Run-Ping Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document