Metamodel-based prediction of On Resistance for microelectronic power switches

Author(s):  
G. Nicolae ◽  
A. Buzo ◽  
C. Feuerbaum ◽  
C.V. Diaconu ◽  
H. Cucu ◽  
...  
Keyword(s):  
2015 ◽  
Author(s):  
Daniel Georgiev ◽  
Vijaya Devabhaktuni ◽  
Roger King

Author(s):  
M. E. Swalby ◽  
S. F. Glover ◽  
F. J. Zutavern ◽  
K. W. Reed ◽  
M. J. Cich ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 917
Author(s):  
Ickjin Son ◽  
Grace Firsta Lukman ◽  
Mazahir Hussain Shah ◽  
Kwang-Il Jeong ◽  
Jin-Woo Ahn

Switched reluctance motors (SRMs) are simple in structure, easy to manufacture, magnet-less, brushless, and highly robust compared to other AC motors which makes them a good option for applications that operate in harsh environment. However, the motor has non-linear magnetic characteristics, and it comes with various pole-phase combinations and circuit topologies that causes many difficulties in deciding on which type to choose. In this paper, the viability of SRM as a low-cost, rugged machine for vehicle radiator cooling fan is considered. First, necessary design considerations are presented, then three commonly use types of SRM are analyzed: A 3-phase 6/4, 3-phase 12/8, and a 4-phase 8/6 to find their static and dynamic characteristics so the most suitable type can be selected. Simulation results show that the 8/6 SRM produces the highest efficiency with less phase current which reduces the converter burden. However, with asymmetric half bridge converter, eight power switches are required for 8/6 SRM and thus put a burden on the overall drive cost. As a solution, the Miller converter with only six switches for four phase SRM. To verify the proposed idea, the 8/6 SRM was manufactured and tested. The results show that Miller converter can be used for the proposed SRM with slightly reduced efficiency at 80.4%.


2015 ◽  
Vol 25 (03) ◽  
pp. 1640013
Author(s):  
Miroslav Valka ◽  
Alberto Bosio ◽  
Luigi Dilillo ◽  
Patrick Girard ◽  
Arnaud Virazel ◽  
...  

Power gating techniques have been adopted so far to reduce the static power consumption of integrated circuits (ICs). Power gating is usually implemented by means of several power switches (PSs). Manufacturing defects affecting PSs can lead to increase in the actual static power consumption and, in the worst case, they can completely isolate a functional block in the IC. Thus, efficient test and diagnosis solutions are needed. In this paper, we present a novel Design for Test and Diagnosis (DfTD) solution able to increase the test quality and diagnosis accuracy of PSs. The proposed approach has been validated through SPICE simulations on ITC’99 benchmark circuits as well as on industrial test cases.


2021 ◽  
Vol 20 (2) ◽  
pp. 1-7
Author(s):  
Jahanzeb - ◽  
Shahrin Md. Ayob ◽  
Saifullah Khan ◽  
Mohd Zaki Daud ◽  
Razman Ayop

There is always a need to create efficient and optimized converters to deliver the best possible results to achieve a better THD profile in the waveform output. One way is by controlling the switching of the power switches of the converters using appropriate modulation schemes. While numerous works have been done in proposing new switching modulation strategies for multilevel inverters, this work will compare multicarrier PWM and near-to-level control (NLC) modulation schemes. In this paper, multicarrier PWM variants, namely, PD-PWM, POD-PWM, and APOD-PWM, are designed and simulated. Their voltage THD and spectrum performance are discussed when applied to single-phase 7, 9, and 11-level cascaded multilevel inverters. Then NLC modulation will be designed and applied to similar multilevel inverter circuits. It will be shown that the NLC exhibits some superior performances compared to PWM-based but with several drawbacks that can be optimized. 


2018 ◽  
Vol 7 (4) ◽  
pp. 2672
Author(s):  
Shamsher Ansari ◽  
Aseem Chandel ◽  
SMIEEE . ◽  
Zulfiqar Ali Sheikh

Recently the tremendous advancement has been seen in the field of matrix converter topology. For high power drive applications, industries often need high power AC-AC converters like three level matrix converter because it is having the ability to generate a set of balanced sine waves for inputs as well as outputs. The three level matrix converters possess better output performance with reduced harmonic contents compared to all two-stage indirect matrix converters. In this matrix converter topology, the idea of neutral-point clamped-VSI is employed to the inversion step of the matrix converter circuitry. To control the power switches the gate signals are produced using NTVV based space vector modulation. To justify the theoretical study a complete model of a three-level twin-step matrix converter has been designed in Matlab/Simulink and its performances are analysed.  


EPE Journal ◽  
2003 ◽  
Vol 13 (4) ◽  
pp. 7-12
Author(s):  
J. P. Lavieville ◽  
C. Aït Mahrez ◽  
W. Weber ◽  
J.L. Thomas

Sign in / Sign up

Export Citation Format

Share Document