Experimental Studies of Partial Discharges in Bubbles Exposed to X-Ray Radiation

Author(s):  
Sergey Korobevnikov ◽  
Aleksandr Ridel ◽  
Marina Lyutikova
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 805
Author(s):  
Saif Ullah Khan ◽  
Rumman Zaidi ◽  
Feroz Shaik ◽  
Izharul Haq Farooqi ◽  
Ameer Azam ◽  
...  

Nanotechnology has received much attention in treating contaminated waters. In the present study, a facile co-precipitation method was employed to synthesize a novel iron and magnesium based binary metal oxide using a stoichiometrically fixed amount of FeNO3.9H2O and MgNO3.6H2O in a proportion of molar concentration 1:1 and was later evaluated in removing As (III) from contaminated waters. Characterization of the prepared nanomaterial was done using X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX) and ultraviolet–visible spectrophotometry (UV-VIS). Experimental studies on batch scale were carried out, examining the effect of varying initial concentrations of metal, adsorbent dosage, application time and initial pH on removal efficiency. Arsenic removal increased on increasing adsorbent dosage (0.1–1 g/L) but trend reversed on increasing initial arsenic concentration attaining qmax of 263.20 mg/g. Adsorption was quite efficient in pH range 4–8. Freundlich fitted better for adsorption isotherm along with following Pseudo-2nd order kinetics. The reusability and effect of co-existing ions on arsenic adsorption, namely SO42−, CO32− and PO43− were also explored with reusability in 1st and 2nd cycles attained adsorptive removal up to 77% and 64% respectively. The prepared nano-adsorbent showed promising results in terms of high arsenic uptake (qmax of 263.20 mg/g) along with facile and cost-effective synthesis. Thus, the co-precipitation technique used in this work is a simple one step procedure without any use of any precursor as compared to most of the other procedures used for synthesis.


1997 ◽  
Vol 15 (2) ◽  
pp. 297-316 ◽  
Author(s):  
L.J. Dhareshwar ◽  
N. Gopi ◽  
C.G. Murali ◽  
B.S. Narayan ◽  
U.K. Chatterjee

A review of work done on laser generated shocks in solids using a high-peak-power Nd:glass laser in the Laser and Plasma Technology Division of the Bhabha Atomic Research Centre is presented in this paper. The 20-J/5-ns Nd:glass laser used in the experiments is able to produce focused laser intensities in the range of 5 × 1011-1013 W/cm2 and a shock pressure in the range of 0.1–5 Mbar. A l-J/100-ps Nd:glass laser is also being developed for laser shock studies, details of which are presented. Several diagnostics have been developed for laser shock studies of which the main diagnostics are optical shadowgraphy, optical interferometry, and laser velocity interferometry for particle velocity measurement. The measurement of ablation pressure in various types of targets, the scaling of ablation pressure with laser intensity, the effect of laser beam nonuniformity on shockfront or ablation pressure uniformity, the smoothing of shockfront and pressure profiles in high-Z coated and high-Z doped targets, and so on, are the various experimental studies conducted. We have tried to study X-ray driven ablation in aluminum and plastic targets using gold and copper as X-ray producing targets. Uniform pressure of about 0.1 Mbar has been generated over an area of 4 mm2


Author(s):  
LR Bhandarkar ◽  
PP Mohanty ◽  
SK Sarangi

The drive of this research is to examine the machinability of 100Cr6 bearing steel using advanced C-type cutting tools. Experimental studies investigated the effects of machining variables on the surface quality, chip reduction coefficient and cutting force. Seven advanced coated tools were checked for characterization by micro hardness (VHN), adhesion quality, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS). The experimental trials were planned by Taguchi’s L18 orthogonal array using a mixed-level design. Two numerical machining variables feed rate and cutting speed, and one categorical machining variable tool type was taken into consideration while a constant depth of cut was kept for all trails. A combined Taguchi-Satisfaction function distance measure approach was implemented for multi-response optimization. The most promising machining parameter setting for minimization of surface roughness, cutting force, and chip reduction coefficient was identified. The most important process parameter was found to be tool-type. Ceramics tools are found to be best trailed by WC coated tools under most of the conditions. Lower tool wear was observed in the CBN tool as compared to others.


2018 ◽  
Vol 46 (6) ◽  
pp. 1431-1447 ◽  
Author(s):  
Tobias Tandrup ◽  
Kristian E. H. Frandsen ◽  
Katja S. Johansen ◽  
Jean-Guy Berrin ◽  
Leila Lo Leggio

Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes discovered within the last 10 years. By degrading recalcitrant substrates oxidatively, these enzymes are major contributors to the recycling of carbon in nature and are being used in the biorefinery industry. Recently, two new families of LPMOs have been defined and structurally characterized, AA14 and AA15, sharing many of previously found structural features. However, unlike most LPMOs to date, AA14 degrades xylan in the context of complex substrates, while AA15 is particularly interesting because they expand the presence of LPMOs from the predominantly microbial to the animal kingdom. The first two neutron crystallography structures have been determined, which, together with high-resolution room temperature X-ray structures, have putatively identified oxygen species at or near the active site of LPMOs. Many recent computational and experimental studies have also investigated the mechanism of action and substrate-binding mode of LPMOs. Perhaps, the most significant recent advance is the increasing structural and biochemical evidence, suggesting that LPMOs follow different mechanistic pathways with different substrates, co-substrates and reductants, by behaving as monooxygenases or peroxygenases with molecular oxygen or hydrogen peroxide as a co-substrate, respectively.


Author(s):  
Agnes Serbanescu ◽  
Mona Barbu ◽  
Ionut Cristea ◽  
Gina Catrina ◽  
Georgiana Cernica ◽  
...  

A good function of waste-to-energy installation requires knowledge of the combustion characteristics of the fuel and fusion characteristics of the ash produced in the combustion process. Sewage sludge could be considered as renewable fuel due the high quantity of organics of sufficiently high calorific value. The combustion of sewage sludge can cause operating problems due to high ash content containing mineral compounds. This paper presents the oxide composition of three kinds of sewage sludge ashes and the influence on the slagging and fouling process in combustion. For comparation, two coal samples were selected, a low and a high rank coal. The mineral matter were investigated by the X-ray fluorescence analytical technique using the Rigaku CG X-ray Spectrofluorimeter. The evaluation of slagging and fouling process was performed on the basis of some indices: the basic oxides, the base-to-acid ratio, the slagging index and the fouling index. The conclusion based on experimental studies is that depending on mineral content the sewage sludge ash can cause high to moderate slagging and fouling hazard.


Author(s):  
S.J. Opella ◽  
L.E. Chirlian

Structural biology relies on detailed descriptions of the three-dimensional structures of peptides, proteins, and other biopolymers to explain the form and function of biological systems ranging in complexity from individual molecules to entire organisms. NMR spectroscopy and X-ray crystallography, in combination with several types of calculations, provide the required structural information. In recent years, the structures of several hundred proteins have been determined by one or both of these experimental methods. However, since the protein molecules must either reorient rapidly in samples for multidimensional solution NMR spectroscopy or form high quality single crystals in samples for X-ray crystallography, nearly all of the structures determined up to now have been of the soluble, globular proteins that are found in the cytoplasm and periplasmof cells and fortuitously have these favorable properties. Since only a minority of biological properties are expressed by globular proteins, and proteins, in general, have evolved in order to express specific functions rather than act as samples for experimental studies, there are other classes of proteins whose structures are currently unknown but are of keen interest in structural biology. More than half of all proteins appear to be associated with membranes, and many cellular functions are expressed by proteins in other types of supramolecular complexes with nucleic acids, carbohydrates, or other proteins. The interest in the structures of membrane proteins, structural proteins, and proteins in complexes provides many opportunities for the further development and application of NMR spectroscopy. Our understanding of polypeptides associated with lipids in membranes, in particular, is primitive, especially compared to that for globular proteins. This is largely a consequence of the experimental difficulties encountered in their study by conventional NMR and X-ray approaches. Fortunately, the principal features of two major classes of membrane proteins have been identified from studies of several tractable examples. Bacteriorhodopsin (Henderson et al., 1990), the subunits of the photosynthetic reaction center (Deisenhofer et al., 1985), and filamentous bacteriophage coat proteins (Shon et al., 1991; McDonnell et al., 1993) have all been shown to have long transmembrane hydrophobic helices, shorter amphipathic bridging helices in the plane of the bilayers, both structured and mobile loops connecting the helices, and mobile N- and C-terminal regions.


Sign in / Sign up

Export Citation Format

Share Document