Experimental study and multi-objective optimization of process parameters during turning of 100Cr6 using C-type advanced coated tools

Author(s):  
LR Bhandarkar ◽  
PP Mohanty ◽  
SK Sarangi

The drive of this research is to examine the machinability of 100Cr6 bearing steel using advanced C-type cutting tools. Experimental studies investigated the effects of machining variables on the surface quality, chip reduction coefficient and cutting force. Seven advanced coated tools were checked for characterization by micro hardness (VHN), adhesion quality, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS). The experimental trials were planned by Taguchi’s L18 orthogonal array using a mixed-level design. Two numerical machining variables feed rate and cutting speed, and one categorical machining variable tool type was taken into consideration while a constant depth of cut was kept for all trails. A combined Taguchi-Satisfaction function distance measure approach was implemented for multi-response optimization. The most promising machining parameter setting for minimization of surface roughness, cutting force, and chip reduction coefficient was identified. The most important process parameter was found to be tool-type. Ceramics tools are found to be best trailed by WC coated tools under most of the conditions. Lower tool wear was observed in the CBN tool as compared to others.

Author(s):  
Akhtar Khan ◽  
Kalipada Maity

The present work explores the application of a novel Multi-Criteria Decision Making (MCDM) based approach known as VIKOR analysis combined with Taguchi technique for simultaneous optimization of some correlated cutting variables in turning of commercially pure titanium grade 2 using uncoated carbide inserts. The experiments have been carried out according to Taguchi’s L27 orthogonal array. Three input variables viz. cutting speed, feed rate and depth of cut have been taken at three different levels. The impact of these cutting variables on cutting force, surface quality and material removal rate has been investigated. The optimal combination of machining parameters has been evaluated to minimize the cutting force and to maximize the surface finish and production rate using MCDM based VIKOR analysis method. ANOVA (analysis of variance) test has been performed to determine the most influencing cutting variable on overall quality measure i.e. VIKOR index (Qi). The optimal setting of machining variables has been shown using main effects plot for S/N ratio for Qi. The results of ANOVA exhibit that the cutting speed is the governing machining parameter followed by feed rate on overall quality index (Qi). The minimum (desirable) value of Qi is achieved at the parametric combination of v3-f1-d3 i.e. cutting speed (110 m/min), feed rate (0.08 mm/rev) and depth of cut (0.4 mm) respectively. The feasibility of the proposed methodology has been verified by conducting a confirmation test.


Author(s):  
Kosaraju Satyanarayana ◽  
Anne Venu Gopal ◽  
Popuri Bangaru Babu

The problem of machining titanium is one of the ever-increasing magnitudes due to its low thermal conductivity and work-hardening characteristic. In the present work, experimental studies have been carried out to obtain the optimum conditions for machining titanium alloy. The effect of machining parameters such as speed, feed, depth of cut and back rake angle on cutting force, and surface roughness were investigated. The significance of these parameters, on cutting force and surface roughness, has been established using the analysis of variance. The degree of influence of each process parameter on individual performance characteristic was analyzed from the experimental results obtained using the grey relational grade matrix. The back rake angle was identified as the most influential process parameter on cutting force and surface roughness. The cutting speed is identified as the most significant parameter for the turning operation according to the weighted sum grade of the cutting force and surface roughness.


Author(s):  
Barış Özlü ◽  
Halil Demir ◽  
Mustafa Türkmen ◽  
Süleyman Gündüz

In this study, the effect of the microstructure, hardness, and cutting speed on main cutting force and surface roughness in medium carbon microalloyed steel cooled in different mediums after hot forging, was investigated. As-received sample, which was not hot forged, and the samples cooled in the sand, air, oil, and polymerized water after hot forging were used for the experimental studies. The machinability tests were performed via turning method by using coated carbide and coated ceramic cutting tools with five cutting speed (120, 150, 180, 210, and 240 m/min), constant feed rate (0.04 mm/rev), and constant depth of cut (0.6 mm). The microstructure examinations of the samples were carried out and their hardness values were determined. Also, the wear of cutting tools were examined with scanning electron microscope. In the experimental study, it was revealed that the microstructure, hardness and cutting speed had a significant effect on the surface roughness values of the samples cooled in dissimilar environments following forging. Moreover, the samples cooled in air and polymerized water, whose hardness increased depending on the increase in the cooling rate, had the highest cutting force after machining by using the coated carbide and ceramic tool.


2020 ◽  
Vol 184 ◽  
pp. 01014
Author(s):  
Kosaraju Satynarayana ◽  
Gayam Sreenivas Reddy ◽  
Chitimilla Srikar ◽  
Janaswami Gnyaneshwar ◽  
Yedla Shyam Prasad ◽  
...  

In owe to the global concern of environment growth and green production acts with use biodegradable and low consumption of lubrications the present paper deals use of MQL in turning EN 45 steel. Literacy over the use of effective production practices increases the efficiency of surface integrity and economical effect of production. With this aspect, the present study deals with of surface roughness characteristic generated while turning EN 45 graded spring steel with uncoated CNMG insert under MQL condition. A total of 27 experiments are performed on a CNC lathe under both Dry and MQL conditions. Surface roughness produced with varying in machining parameter of cutting speed (75, 100, 125 m/min), feed rate (0.1, 0.2, 0.3 mm/rev) and depth of cut (0.3, 0.6, 0.9 mm). Effect of induvial parameter over surface roughness is been clearly pictured out with the graphical representation with comparison under both DRY and MQL conditions. A mathematical model was generated with the experimental results for prediction of roughness within the limits of parameters. ANOVA analysis, feed shows a high contribution towards the surface roughness.


2017 ◽  
Vol 261 ◽  
pp. 135-142 ◽  
Author(s):  
Witold F. Habrat

In this paper, the experimental studies of the finish turning of Ti-6Al-4V titanium alloy with the laser-assisted machining were described. For the tests, a cemented carbide tool was used. The influence of the laser heating on the microstructure of Ti-6Al-4V titanium alloy for kinematics corresponding with the turning process was determined. For a laser scanning rate of 80 m/min and laser power 1200W, the maximum depth of the melted zone was about 50 μm. The beneficial effect of laser assisted machining on components of the cutting force was established. For a cutting speed of 80 m/min, feed rate 0.1 mm/rev, depth of cut 0.25 mm and laser power 1200 W, over 60% reduction of the tangential components of cutting force was observed. The chip-breaking effect for the conventional and the laser-assisted processes was determined. Roughness parameters of the surface after the conventional and laser-assisted turning are compared.


2012 ◽  
Vol 234 ◽  
pp. 74-77 ◽  
Author(s):  
Mohsen Marani Barzani ◽  
Mohd Yusof Noordin ◽  
Saaed Farahany ◽  
Ali Ourdjini

One of the important aspects of machining is the measurement of the cutting forces acting on the tool. The information of forces is required for evaluation of power requirements, designing tool holder, machine tool elements and fixture. In this research, the effect of cutting condition on cutting force when turning untreated Al-11%Si-1.8%Cu and Sb-treated alloys was investigated. PVD TiN coated insert as cutting tool under oblique dry cutting process utilized. Experiments were conducted at three different cutting speeds of 70, 130 and 250 m/min with feed rates of 0.05, 0.1 and 0.15 mm/rev, whereas depth of cut was kept constant at 0.05 mm. The results revealed that turning of Sb-treated alloys requires higher cutting force in comparison to untreated alloy. The cutting force values increased about four times with increasing feed rate from 0.05 mm/rev to 0.15 mm/rev. Furthermore, the cutting force decreased with increasing cutting speed from 70 m/min to 250 m/min.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 326
Author(s):  
Lan Zhang ◽  
Xianbin Sha ◽  
Ming Liu ◽  
Liquan Wang ◽  
Yongyin Pang

In the field of underwater emergency maintenance, submarine pipeline cutting is generally performed by a diamond wire saw. The process, in essence, involves diamond grits distributed on the surface of the beads cutting X56 pipeline steel bit by bit at high speed. To find the effect of the different parameters (cutting speed, coefficient of friction and depth of cut) on cutting force, the finite element (FEA) method and response surface method (RSM) were adopted to obtain cutting force prediction models. The former was based on 64 simulations; the latter was designed according to DoE (Design of Experiments). Confirmation experiments were executed to validate the regression models. The results indicate that most of the prediction errors were within 10%, which were acceptable in engineering. Based on variance analyses of the RSM models, it could be concluded that the depth of the cut played the most important role in determining the cutting force and coefficient the of friction was less influential. Despite making little direct contribution to the cutting force, the cutting speed is not supposed to be high for reducing the coefficient of friction. The cutting force models are instructive in manufacturing the diamond beads by determining the protrusion height of the diamond grits and the future planning of the cutting parameters.


Author(s):  
MAHIR AKGÜN

This study focuses on optimization of cutting conditions and modeling of cutting force ([Formula: see text]), power consumption ([Formula: see text]), and surface roughness ([Formula: see text]) in machining AISI 1040 steel using cutting tools with 0.4[Formula: see text]mm and 0.8[Formula: see text]mm nose radius. The turning experiments have been performed in CNC turning machining at three different cutting speeds [Formula: see text] (150, 210 and 270[Formula: see text]m/min), three different feed rates [Formula: see text] (0.12 0.18 and 0.24[Formula: see text]mm/rev), and constant depth of cut (1[Formula: see text]mm) according to Taguchi L18 orthogonal array. Kistler 9257A type dynamometer and equipment’s have been used in measuring the main cutting force ([Formula: see text]) in turning experiments. Taguchi-based gray relational analysis (GRA) was also applied to simultaneously optimize the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]). Moreover, analysis of variance (ANOVA) has been performed to determine the effect levels of the turning parameters on [Formula: see text], [Formula: see text] and [Formula: see text]. Then, the mathematical models for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) have been developed using linear and quadratic regression models. The analysis results indicate that the feed rate is the most important factor affecting [Formula: see text] and [Formula: see text], whereas the cutting speed is the most important factor affecting [Formula: see text]. Moreover, the validation tests indicate that the system optimization for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) is successfully completed with the Taguchi method at a significance level of 95%.


2017 ◽  
Vol 24 (7) ◽  
pp. 2009-2021 ◽  
Author(s):  
Akhtar Khan ◽  
Kalipada Maity

Purpose The purpose of this paper is to explore a multi-criteria decision-making (MCDM) methodology to determine an optimal combination of process parameters that is capable of generating favorable dimensional accuracy and product quality during turning of commercially pure titanium (CP-Ti) grade 2. Design/methodology/approach The present paper recommends an optimal combination of cutting parameters with an aim to minimize the cutting force (Fc), surface roughness (Ra), machining temperature (Tm) and to maximize the material removal rate (MRR) after turning of CP-Ti grade 2. This was achieved by the simultaneous optimization of the aforesaid output characteristics (i.e. Fc, Ra, Tm, and MRR) using the MCDM-based TOPSIS method. Taguchi’s L9 orthogonal array was used for conducting the experiments. The output responses (cutting force: Fc, surface roughness: Ra, machining temperature: Tm and MRR) were integrated together and presented in terms of a single signal-to-noise ratio using the Taguchi method. Findings The results of the proposed methodology depict that the higher MRR with desirable surface quality and the lower cutting force and machining temperature were observed at a combination of cutting variables as follows: cutting speed of 105 m/min, feed rate of 0.12 mm/rev and depth of cut of 0.5 mm. The analysis of variance test was conducted to evaluate the significance level of process parameters. It is evident from the aforesaid test that the depth of cut was the most significant process parameter followed by cutting speed. Originality/value The selection of an optimal parametric combination during the machining operation is becoming more challenging as the decision maker has to consider a set of distinct quality characteristics simultaneously. This situation necessitates an efficient decision-making technique to be used during the machining operation. From the past literature, it is noticed that only a few works were reported on the multi-objective optimization of turning parameters using the TOPSIS method so far. Thus, the proposed methodology can help the decision maker and researchers to optimize the multi-objective turning problems effectively in combination with a desirable accuracy.


Sign in / Sign up

Export Citation Format

Share Document