Creation of Three-dimensional Composites of Tricalcium Phosphate and Single-wall Carbon Nanotubes for Bone Tissue Engineering

Author(s):  
Svetlana Z. Zhovnir ◽  
Artem V. Kuksin ◽  
Mikhail S. Saveliev ◽  
Ivan V. Pyanov ◽  
Denis T. Murashko
2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988378 ◽  
Author(s):  
Hongyu Jin ◽  
Yue Zhuo ◽  
Yang Sun ◽  
Hongya Fu ◽  
Zhenyu Han

In bone tissue engineering, three-dimensional printed biological scaffolds play an important role in the development of bone regeneration. The ideal scaffolds should have the ability to match the bone degradation rate and osteogenic ability. This article optimizes the unit cell model of the microstructure including spherical pore, gyroid, and topology to explore degradation performance of scaffolds. Boolean operation of array microstructure unit cells and selected part of a computer-aided design (CAD) femur model are adopted to create a reconstructed scaffold model. Polylactic acid/[Formula: see text]-tricalcium phosphate/hydroxyapatite scaffolds with spherical pore, gyroid, and topology-optimized structures are manufactured by three-dimensional printing utilizing the composition of bio-ink including polylactic acid, [Formula: see text]-tricalcium phosphate, and hydroxyapatite. After degradation of the scaffolds in vitro for several days, the mechanical properties are analyzed to study the effects of different microstructures on the degradation properties. The results show that the gyroid scaffolds with favorable degradability still maintain excellent mechanical properties after degradation. Mechanical properties of the scaffolds with topology-optimized structure and spherical pore microstructure scaffolds have a significant decrease after degradation.


2017 ◽  
Vol 264 ◽  
pp. 42-45
Author(s):  
Rosaniza Md Isa ◽  
Mariatti Jaafar

β-tricalcium phosphate (β-TCP) is a ceramic that commonly been used in bone tissue engineering. This material exhibits low mechanical properties such as low fracture toughness and brittleness. To overcome these problems, polylactic acid (PLA)/ β-TCP scaffolds for bone tissue engineering were prepared by using the combination method of solvent casting and salt leaching. These methods were used to produce three-dimensionally interconnected pores of the scaffold according to different ratio of β-TCP with porogen agent (sodium chloride (NaCl)). It is found that porosity and pore size of the scaffolds were independently controlled by the ratio and the particle size of the added porogen. The increases of pore interconnectivity were observed with increasing of PLA/ β-TCP/ NaCl ratios. Scaffolds with 80-90 wt% of total porogen content displayed acceptable mechanical properties for bone tissue engineering applications. Morphology observed by scanning electron microscopy (SEM) revealed that highly porous three-dimensional scaffold (>80 wt%) with well interconnected porous structure could be achieved by this combination process.


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


2015 ◽  
Vol 2 (11) ◽  
pp. 150496 ◽  
Author(s):  
Fabian Westhauser ◽  
Christian Weis ◽  
Melanie Hoellig ◽  
Tyler Swing ◽  
Gerhard Schmidmaier ◽  
...  

Bone tissue engineering and bone scaffold development represent two challenging fields in orthopaedic research. Micro-computed tomography (mCT) allows non-invasive measurement of these scaffolds’ properties in vivo . However, the lack of standardized mCT analysis protocols and, therefore, the protocols’ user-dependency make interpretation of the reported results difficult. To overcome these issues in scaffold research, we introduce the Heidelberg-mCT-Analyzer. For evaluation of our technique, we built 10 bone-inducing scaffolds, which underwent mCT acquisition before ectopic implantation (T0) in mice, and at explantation eight weeks thereafter (T1). The scaffolds’ three-dimensional reconstructions were automatically segmented using fuzzy clustering with fully automatic level-setting. The scaffold itself and its pores were then evaluated for T0 and T1. Analysing the scaffolds’ characteristic parameter set with our quantification method showed bone formation over time. We were able to demonstrate that our algorithm obtained the same results for basic scaffold parameters (e.g. scaffold volume, pore number and pore volume) as other established analysis methods. Furthermore, our algorithm was able to analyse more complex parameters, such as pore size range, tissue mineral density and scaffold surface. Our imaging and post-processing strategy enables standardized and user-independent analysis of scaffold properties, and therefore is able to improve the quantitative evaluations of scaffold-associated bone tissue-engineering projects.


Sign in / Sign up

Export Citation Format

Share Document