scholarly journals Heidelberg-mCT-Analyzer: a novel method for standardized microcomputed-tomography-guided evaluation of scaffold properties in bone and tissue research

2015 ◽  
Vol 2 (11) ◽  
pp. 150496 ◽  
Author(s):  
Fabian Westhauser ◽  
Christian Weis ◽  
Melanie Hoellig ◽  
Tyler Swing ◽  
Gerhard Schmidmaier ◽  
...  

Bone tissue engineering and bone scaffold development represent two challenging fields in orthopaedic research. Micro-computed tomography (mCT) allows non-invasive measurement of these scaffolds’ properties in vivo . However, the lack of standardized mCT analysis protocols and, therefore, the protocols’ user-dependency make interpretation of the reported results difficult. To overcome these issues in scaffold research, we introduce the Heidelberg-mCT-Analyzer. For evaluation of our technique, we built 10 bone-inducing scaffolds, which underwent mCT acquisition before ectopic implantation (T0) in mice, and at explantation eight weeks thereafter (T1). The scaffolds’ three-dimensional reconstructions were automatically segmented using fuzzy clustering with fully automatic level-setting. The scaffold itself and its pores were then evaluated for T0 and T1. Analysing the scaffolds’ characteristic parameter set with our quantification method showed bone formation over time. We were able to demonstrate that our algorithm obtained the same results for basic scaffold parameters (e.g. scaffold volume, pore number and pore volume) as other established analysis methods. Furthermore, our algorithm was able to analyse more complex parameters, such as pore size range, tissue mineral density and scaffold surface. Our imaging and post-processing strategy enables standardized and user-independent analysis of scaffold properties, and therefore is able to improve the quantitative evaluations of scaffold-associated bone tissue-engineering projects.

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1880 ◽  
Author(s):  
Ulrike Rottensteiner-Brandl ◽  
Rainer Detsch ◽  
Bapi Sarker ◽  
Lara Lingens ◽  
Katrin Köhn ◽  
...  

Alginate dialdehyde (ADA), gelatin, and nano-scaled bioactive glass (nBG) particles are being currently investigated for their potential use as three-dimensional scaffolding materials for bone tissue engineering. ADA and gelatin provide a three-dimensional scaffold with properties supporting cell adhesion and proliferation. Combined with nanocristalline BG, this composition closely mimics the mineral phase of bone. In the present study, rat bone marrow derived mesenchymal stem cells (MSCs), commonly used as an osteogenic cell source, were evaluated after encapsulation into ADA-gelatin hydrogel with and without nBG. High cell survival was found in vitro for up to 28 days with or without addition of nBG assessed by calcein staining, proving the cell-friendly encapsulation process. After subcutaneous implantation into rats, survival was assessed by DAPI/TUNEL fluorescence staining. Hematoxylin-eosin staining and immunohistochemical staining for the macrophage marker ED1 (CD68) and the endothelial cell marker lectin were used to evaluate immune reaction and vascularization. After in vivo implantation, high cell survival was found after 1 week, with a notable decrease after 4 weeks. Immune reaction was very mild, proving the biocompatibility of the material. Angiogenesis in implanted constructs was significantly improved by cell encapsulation, compared to cell-free beads, as the implanted MSCs were able to attract endothelial cells. Constructs with nBG showed higher numbers of vital MSCs and lectin positive endothelial cells, thus showing a higher degree of angiogenesis, although this difference was not significant. These results support the use of ADA/gelatin/nBG as a scaffold and of MSCs as a source of osteogenic cells for bone tissue engineering. Future studies should however improve long term cell survival and focus on differentiation potential of encapsulated cells in vivo.


2007 ◽  
Vol 330-332 ◽  
pp. 1173-1176 ◽  
Author(s):  
Cai Li ◽  
Run Liang Chen ◽  
Lei Liu ◽  
Yun Feng Lin ◽  
Wei Dong Tian ◽  
...  

Poly(lactide-co-glycolide) (PLGA) and alginate(AG) are the most promising scaffolds in the bone tissue engineering for their stable mechanical characters and three-dimensional porous structure. This study aimed to assay the in vivo osteogenesis potentials by loading the autogenous bone marrow stromal cells (BMSCs) on PLGA or AG. The results suggested that PLGA and AG are both ideal bone tissue engineering scaffold. BMSCs/AG has stronger osteogenesis potentials in vivo than BMSCs/PLGA.


2015 ◽  
Vol 16 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Saeid Nosouhian ◽  
Amin Davoudi ◽  
Mansour Rismanchian ◽  
Sayed Mohammad Razavi ◽  
Hamidreza Sadeghiyan

ABSTRACT Introduction Three-dimensional Scaffold structure of synthetic biomaterials with their interconnected spaces seem to be a safe and effective option in supporting bone regeneration. The aim of this animal study was to compare the effectiveness of three different biocompatible scaffolds: bioglass (BG), demineralized bone matrix (DBM) and forstrite (FR). Materials and methods Four healthy dogs were anesthetized and the first to fourth premolars were extracted atraumatically in each quadrant. After healing, linear incision was prepared from molar to anterior segment and 4 defects in each quadrant (16 defects in each dog) were prepared. Scaffold blocks of BG, DBM and FR were resized according to size of defects and placed in the 12 defects randomly, 4 defects remained as control group. The dogs were sacrificed in 4 time intervals (15, 30, 45 and 60 days after) and the percentage of different types of regenerated bones (lamellar and woven) and connective tissue were recorded in histological process. The data were analyzed by one-way ANOVA and post hoc using SPSS software Ver. 15 at significant level of 0.05. Results In day 30th, although the amount of regenerated lamellar bone in control, DBM and BG Scaffold (22.37 ± 3.44; 21.46 ± 1.96; 21.21 ± 0.96) were near to each, the FR Scaffold provided the highest amount of lamellar (29.71 ± 7.94) and woven bone (18.28 ± 2.35). Also, FR Scaffold showed significant difference with BG (p = 0.026) and DBM Scaffolds (p = 0.032) in regenerated lamellar bone. Conclusion We recommend paying more attention to FR Scaffold as a biomaterial, but it is better to be compared with other nano biomaterials in future studies. How to cite this article Rismanchian M, Nosouhian S, Razavi SM, Davoudi A, Sadeghiyan H. Comparing Three Different Threedimensional Scaffolds for Bone Tissue Engineering: An in vivo Study. J Contemp Dent Pract 2015;16(1):25-30.


Author(s):  
Eamon J. Sheehy ◽  
Tatiana Vinardell ◽  
Conor T. Buckley ◽  
Daniel J. Kelly

Tissue engineering applications aim to replace or regenerate damaged tissues through a combination of cells, three-dimensional scaffolds, and signaling molecules [1]. The endochondral approach to bone tissue engineering [2], which involves remodeling of an intermittent hypertrophic cartilaginous template, may be superior to the traditional intramembranous approach. Naturally derived hydrogels have been used extensively in tissue engineering applications [3]. Mesenchymal stem cell (MSC) seeded hydrogels may be a particularly powerful tool in scaling-up engineered endochondral bone grafts as the low oxygen conditions that develop within large constructs enhance in vitro chondrogenic differentiation and functional development [4]. A key requirement however, is that the hydrogel must allow for remodeling of the engineered hypertrophic cartilage into bone and also facilitate vascularization of the graft. The first objective of this study was to compare the capacity of different naturally derived hydrogels (alginate, chitosan, and fibrin) to generate in vivo endochondral bone. The secondary objective was to investigate the possibility of engineering a ‘scaled-up’ anatomically accurate distal phalange as a paradigm for whole bone tissue engineering.


2019 ◽  
Author(s):  
Tao He ◽  
Jörg Hausdorf ◽  
Yan Chevalier ◽  
Roland Manfred Klar

Abstract Background: The translation from animal research into the clinical environment remains problematic, as animal systems do not adequately replicate the human in vivo environment. Bioreactors have emerged as a good alternative that can reproduce part of the human in vivo processes at an in vitro level. Bone tissue-engineering bioreactors, however, still are cell based with tissue based in vitro systems remaining poorly investigated. As such, the present pilot study explored the tissue behavior and cell survival capability within a new in vitro skeletal muscle tissue-based biomaterial organoid bioreactor system to maximize future bone tissue engineering prospects. Results: Three dimensional printed β-tricalcium phosphate/hydroxyapatite devices were either wrapped in a sheet of rat muscle tissue or first implanted in a heterotopic muscle pouch that was then excised and cultured in vitro for up to 30 days. Devices wrapped in muscle tissue showed cell death by day 15. Contrarily, devices in muscle pouches showed angiogenic and limited osteogenic gene expression tendencies with consistent TGF-ß1, COL4A1, VEGF-A, RUNX-2, and BMP-2 upregulation, respectively. Histologically, muscle tissue degradation and fibrin release was seen being absorbed by devices acting possibly as a support for new tissue formation in the bioceramic scaffold that supports progenitor stem cell osteogenic differentiation.Conclusions: These results therefore demonstrate that the skeletal muscle pouch-based biomaterial culturing system can support tissue survival over a prolonged culture period and represents a novel organoid tissue model that with further adjustments could generate bone tissue for direct clinical transplantations.


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Thakoon Thitiset ◽  
Siriporn Damrongsakkul ◽  
Supansa Yodmuang ◽  
Wilairat Leeanansaksiri ◽  
Jirun Apinun ◽  
...  

Abstract Background A novel biodegradable scaffold including gelatin (G), chitooligosaccharide (COS), and demineralized bone matrix (DBM) could play a significant part in bone tissue engineering. The present study aimed to investigate the biological characteristics of composite scaffolds in combination of G, COS, and DBM for in vitro cell culture and in vivo animal bioassays. Methods Three-dimensional scaffolds from the mixture of G, COS, and DBM were fabricated into 3 groups, namely, G, GC, and GCD using a lyophilization technique. The scaffolds were cultured with mesenchymal stem cells (MSCs) for 4 weeks to determine biological responses such as cell attachment and cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, cell morphology, and cell surface elemental composition. For the in vivo bioassay, G, GC, and GCD, acellular scaffolds were implanted subcutaneously in 8-week-old male Wistar rats for 4 weeks and 8 weeks. The explants were assessed for new bone formation using hematoxylin and eosin (H&E) staining and von Kossa staining. Results The MSCs could attach and proliferate on all three groups of scaffolds. Interestingly, the ALP activity of MSCs reached the greatest value on day 7 after cultured on the scaffolds, whereas the calcium assay displayed the highest level of calcium in MSCs on day 28. Furthermore, weight percentages of calcium and phosphorus on the surface of MSCs after cultivation on the GCD scaffolds increased when compared to those on other scaffolds. The scanning electron microscopy images showed that MSCs attached and proliferated on the scaffold surface thoroughly over the cultivation time. Mineral crystal aggregation was evident in GC and greatly in GCD scaffolds. H&E staining illustrated that G, GC, and GCD scaffolds displayed osteoid after 4 weeks of implantation and von Kossa staining confirmed the mineralization at 8 weeks in G, GC, and GCD scaffolds. Conclusion The MSCs cultured in GCD scaffolds revealed greater osteogenic differentiation than those cultured in G and GC scaffolds. Additionally, the G, GC, and GCD scaffolds could promote in vivo ectopic bone formation in rat model. The GCD scaffolds exhibited maximum osteoinductive capability compared with others and may be potentially used for bone regeneration.


Sign in / Sign up

Export Citation Format

Share Document