The effect of ultrasonic power on bonding pad and IMD layers in ultrasonic wire bonding

Author(s):  
Insu Jeon ◽  
Qwanho Chung ◽  
Joonki Hong ◽  
Kwangyoo Byun
2016 ◽  
Vol 2016 (1) ◽  
pp. 000398-000401
Author(s):  
Henri Seppänen

Abstract In power electronics modules, ultrasonic wire bonding is a common method to make electronic connections between the connector pins and the IGBTs. In these modules the connector pins are often residing on top of the plastic frame. Due to the pins being in positions which are hard to reach, clamping of these pins is either suboptimal or not used. This poor or absent clamping combined with the plastic frame's elasticity (softness) means that the pin has more freedom to move compared to the bonding on a metal substrate or IC. In our experiments we measured the pin and the plastic frame displacement with a laser Doppler vibrometer during the ultrasonic heavy wire (400 um in diameter Al wire) bonding process. We measured that the press fitted pin can move laterally along the ultrasonic excitation axis (2.0 ± 0.2) um whereas the frame under the pin moved (0.3 ± 0.1) um. This indicates that the pin slips over the frame while bonding. The slipping of the pin is also visible on the ultrasonic frequency waveforms of the transducer. While molded pins in general are thought to be more stable compared to the press fitted pins, similar behavior is seen in heavy wire bonding where high ultrasonic power is needed. We measured molded frame displacement (0.6 ± 0.2) um while bonding on the pin. In this paper we show how to use process traces and visual inspection to detect unstable pins and how to improve bondability on unstable pins by selecting process parameters that are optimized for the unstable pins rather than stable surfaces.


Author(s):  
Jiromaru TSUJINO ◽  
Masataka KURODA ◽  
Mitsuo HORIKOSHI ◽  
Hidetoshi SUGIMOTO

Author(s):  
Yangyang Long ◽  
Folke Dencker ◽  
Andreas Isaak ◽  
Friedrich Schneider ◽  
Jorg Hermsdorf ◽  
...  

Author(s):  
T. Calvin Tszeng

Despite being a critical phenomenon of tremendous technological significance in ultrasonic flip-chip and wire bonding processes of today’s microelectronic devices, interfacial bond formation still calls for better understanding at a fundamental level. The goal of the research is to improve these processes through better understanding and modeling of bond formation. This paper presents a micromechanics model that addresses increasing contact area during ultrasonic cyclic loading cycle. The micromechanics model provides interfacial shear stress as boundary condition to FEM simulations of ultrasonic bonding processes. Comparison between preliminary results and experimental data is conducted.


2000 ◽  
Vol 123 (4) ◽  
pp. 725-731 ◽  
Author(s):  
Yeau-Ren Jeng ◽  
Jeng-Haur Horng

Wire bonding is a popular joining technique in microelectronic interconnect. In this study, the effects of applied load, surface roughness, welding power and welding time on bonding strength were investigated using an ultrasonic bonding machine and a pull tester. In order to relate bonding strength to contact phenomena, the asperity model was used to compute real contact area and flash temperature between the wire and the pad. The experimental results show that a decrease in load or ultrasonic power produces a larger weldable range in which the combination of operation parameters allow the wire and pad to be welded. Regardless of roughness and applied loads, the bond strength increases to a maximum with increases in the welding time, and then decreases to fracture between wire and pad. The theoretical results and experimental observations indicate that bond strength curves can be divided into three periods. The contact temperature plays an important role in bonding strength in the initial period, and surface roughness is the dominant factor in the final period. The maximum bonding strength point occurs in the initial period for different loads and surface roughness values. Our results show that bond strength of ultrasonic wire bonding can be explained based on the input energy per real contact area.


Sign in / Sign up

Export Citation Format

Share Document