Feasibility of Using a 1T Extremity Scanner with a Four-Element Array to Detect 31P in the Human Calf

Author(s):  
Travis Carrell ◽  
Minyu Gu ◽  
Mary P. McDougall ◽  
Steven M. Wright
Keyword(s):  
Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 632-P
Author(s):  
MASOUD EDALATI ◽  
CHRISTOPHER J. SORENSEN ◽  
MARY HASTINGS ◽  
MOHAMED A. ZAYED ◽  
MICHAEL J. MUELLER ◽  
...  

1985 ◽  
Author(s):  
H. E. King ◽  
Jimmy L. Wong ◽  
Thomas M. Plummer ◽  
William C. Wysock
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3614
Author(s):  
Arun Kesavan ◽  
Mu’ath Al-Hassan ◽  
Ismail Ben Mabrouk ◽  
Tayeb A. Denidni

A novel circular polarized dielectric antenna array (DRA) for millimeter-wave applications at 30 GHz is presented in this paper. The unit element array is a flower-shaped DRA fed with a cross slot. To obtain circular polarization, a sequential network combined with the cross slots is used to feed the 2×2 array. The prototype of the proposed antenna array is fabricated and measured to obtain a wide resonance bandwidth from 27 GHz to 38 GHz frequency band. Furthermore, this left-hand polarized antenna array has achieved a peak gain of 9.5 dBi with 3-dB axial ratio at 30 GHz. The proposed DRA array with wideband resonance and gain bandwidth has the potential to be used for millimeter-wave wireless communications at the 30 GHz band.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 667
Author(s):  
Raza Ullah ◽  
Sadiq Ullah ◽  
Farooq Faisal ◽  
Rizwan Ullah ◽  
Dong-you Choi ◽  
...  

In this paper, antipodal Vivaldi antenna is designed for 5th generation (5G) mobile communication and Ku-band applications. The proposed designed has three layers. The upper layer consists of eight-element array of split-shaped leaf structures, which is fed by a 1-to-8 power divider network. Middle layer is a substrate made of Rogers 5880. The bottom layer consists of truncated ground and shorter mirror-image split leaf structures. The overall size of the designed antenna is confined significantly to 33.31 × 54.96 × 0.787 (volume in mm3), which is equivalent to 2λo× 3.3λo× 0.05λo (λo is free-space wavelength at 18 GHz). Proposed eight elements antenna is multi-band in nature covering Ku-bands (14.44–20.98 GHz), two millimeter wave (mmW) bands i.e., 24.34–29 GHz and 33–40 GHz, which are candidate frequency bands for 5G communications. The Ku-Band is suitable for radar applications. Proposed eight elements antenna is very efficient and has stable gain for 5G mobile communication and Ku-band applications. The simulation results are experimentally validated by testing the fabricated prototypes of the proposed design.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 673
Author(s):  
Mian Kamal ◽  
Shouyi Yang ◽  
Saad Kiani ◽  
Daniyal Sehrai ◽  
Mohammad Alibakhshikenari ◽  
...  

To address atmospheric attenuation and path loss issues in the mmwave portion of the spectrum, high gain and narrow beam antenna systems are essential for the next generation communication networks. This paper presents a novel hook-shaped antenna array for 28 GHz 5G mmwave applications. The proposed antenna was fabricated on commercially available Rogers 5880 substrate with thickness of 0.508 mm and dimensions of 10 × 8 mm2. The proposed shape consists of a circle with an arc-shaped slot on top of it and T-shaped resonating lengths are introduced in order to attain broad band characteristics having gain of 3.59 dBi with radiation and total efficiency of 92% and 86% for single element. The proposed structure is transformed into a four-element array with total size of 26.9 × 18.5 mm2 in order to increase the gain up to 10.3 dBi at desired frequency of interest. The four-element array is designed such that it exhibits dual-beam response over the entire band of interest and the simulated results agree with fabricated prototype measurements. The proposed antenna array, because of its robustness, high gain, and dual-beam characteristics can be considered as a potential candidate for the next generation 5G communication systems.


Nature ◽  
1983 ◽  
Vol 301 (5896) ◽  
pp. 152-154 ◽  
Author(s):  
Mikio Hirayama ◽  
Robert P. Lisak ◽  
Seung U. Kim ◽  
David E. Pleasure ◽  
Donald H. Silberberg
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document