Adaptive input-power processing for mitigation of PAPR in OFDM

Author(s):  
R.J.P. de Figueiredo ◽  
Lin Fang
Keyword(s):  
Author(s):  
David W. Piston ◽  
Brian D. Bennett ◽  
Robert G. Summers

Two-photon excitation microscopy (TPEM) provides attractive advantages over confocal microscopy for three-dimensionally resolved fluorescence imaging and photochemistry. Two-photon excitation arises from the simultaneous absorption of two photons in a single quantitized event whose probability is proportional to the square of the instantaneous intensity. For example, two red photons can cause the transition to an excited electronic state normally reached by absorption in the ultraviolet. In practice, two-photon excitation is made possible by the very high local instantaneous intensity provided by a combination of diffraction-limited focusing of a single laser beam in the microscope and the temporal concentration of 100 femtosecond pulses generated by a mode-locked laser. Resultant peak excitation intensities are 106 times greater than the CW intensities used in confocal microscopy, but the pulse duty cycle of 10-5 maintains the average input power on the order of 10 mW, only slightly greater than the power normally used in confocal microscopy.


Author(s):  
David W. Piston

Two-photon excitation fluorescence microscopy provides attractive advantages over confocal microscopy for three-dimensionally resolved fluorescence imaging. Two-photon excitation arises from the simultaneous absorption of two photons in a single quantitized event whose probability is proportional to the square of the instantaneous intensity. For example, two red photons can cause the transition to an excited electronic state normally reached by absorption in the ultraviolet. In our fluorescence experiments, the final excited state is the same singlet state that is populated during a conventional fluorescence experiment. Thus, the fluorophore exhibits the same emission properties (e.g. wavelength shifts, environmental sensitivity) used in typical biological microscopy studies. In practice, two-photon excitation is made possible by the very high local instantaneous intensity provided by a combination of diffraction-limited focusing of a single laser beam in the microscope and the temporal concentration of 100 femtosecond pulses generated by a mode-locked laser. Resultant peak excitation intensities are 106 times greater than the CW intensities used in confocal microscopy, but the pulse duty cycle of 10−5 maintains the average input power on the order of 10 mW, only slightly greater than the power normally used in confocal microscopy.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2831
Author(s):  
Teng Wang ◽  
Wantao Li ◽  
Roberto Quaglia ◽  
Pere L. Gilabert

This paper presents an auto-tuning approach for dual-input power amplifiers using a combination of global optimisation search algorithms and adaptive linearisation in the optimisation of a multiple-input power amplifier. The objective is to exploit the extra degrees of freedom provided by dual-input topologies to enhance the power efficiency figures along wide signal bandwidths and high peak-to-average power ratio values, while being compliant with the linearity requirements. By using heuristic search global optimisation algorithms, such as the simulated annealing or the adaptive Lipschitz Optimisation, it is possible to find the best parameter configuration for PA biasing, signal calibration, and digital predistortion linearisation to help mitigating the inherent trade-off between linearity and power efficiency. Experimental results using a load-modulated balanced amplifier as device-under-test showed that after properly tuning the selected free-parameters it was possible to maximise the power efficiency when considering long-term evolution signals with different bandwidths. For example, a carrier aggregated a long-term evolution signal with up to 200 MHz instantaneous bandwidth and a peak-to-average power ratio greater than 10 dB, and was amplified with a mean output power around 33 dBm and 22.2% of mean power efficiency while meeting the in-band (error vector magnitude lower than 1%) and out-of-band (adjacent channel leakage ratio lower than −45 dBc) linearity requirements.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Vel Murugan Gomathy ◽  
T. V. Paramasivam Sundararajan ◽  
C. Sengodan Boopathi ◽  
Pandiyan Venkatesh Kumar ◽  
Krishnamoorthy Vinoth Kumar ◽  
...  

AbstractIn the present study, the application of free space optics (FSO) transmission system to realize a long-reach high-altitude platform (HAP)-to-satellite communication link has been exploited. High-speed information transmission without interference is accomplished using orthogonal frequency division multiplexing (OFDM). Further, the information capacity of the proposed system is increased by employing mode division multiplexing (MDM). We have investigated the proposed MDM-OFDM-HAP-to-satellite FSO transmission system performance over varying FSO range, diameter of the receiver, pointing errors, and input power. Also, an improved transmission performance of the proposed system using a square root module is reported.


Sign in / Sign up

Export Citation Format

Share Document