Impact of Compressed Biogas on Combustion and Exhaust Emission Characteristic from Spark Ignition Engine

Author(s):  
Arkada Santiarpa ◽  
Thawatchai Wongchang ◽  
Boonlue Sawatmongkhon ◽  
Kampanart Theinnoi ◽  
Chalermchai Chaitongrat
Author(s):  
Abdul Rahman ◽  
Asnawi Asnawi ◽  
Reza Putra ◽  
Hagi Radian ◽  
Tri Waluyo

Bioethanol characteristics can be used as an alternative fuel to spark-ignition (SI) engines to reduce emissions. This experiment evaluates the production of emissions for SI engines using hydrogen enrichment in the gasoline-bioethanol fuel blends. The fraction of bioethanol fuel blend was added to the gasoline fuel of 10% by volume and hydrogen fuel produced by the electrolysis process with a dry cell electrolyzer. The NaOH was used as an electrolyte which is dissolved in water of 5% by a mass fraction. The test is conducted using a single-cylinder 155cc gasoline engine with sensors and an interface connected to a computer to control loading and record all sensor variables in real-time. Hydrogen produced from the electrolysis reactor is injected through the intake manifold using two injectors, hydrogen injected simultaneously at a specific time with a gasoline-bioethanol fuel. The test was conducted with variations of engine speeds. The emission product of ethanol--H2 (BE10+H2) was an excellent candidate as a new alternative of fuel solution in the future. The engasolinerichment of hydrogen increased the flame speed and generated a stable combustion reaction. The hydrogen enrichment produced CO2 emission due to the unavailability of carbon content in hydrogen fuel. As a result, the C/H ratio is lower than for mixed fuels.


1975 ◽  
Vol 189 (1) ◽  
pp. 139-147 ◽  
Author(s):  
G. A. Karim ◽  
I. A. Ali

For various fuel-air mixtures and different compression ratios, the intake temperature was varied over the entire range of ***200°F (366K) down to − 100°F (200K) when employing a single cylinder spark ignited research engine fuelled with natural gas. Performance data such as knock and ignition limits the nature and extent of exhaust emission and chamber pressure cyclic variation were obtained. Means were then suggested for the interpretation of the above mentioned data in terms of engine operation on liquefied natural gas. The experimental work confirmed in general the attractive features of the use of natural gas as a fuel in a spark ignition engine operated under extremely cold intake temperature conditions and that emissions of pollutants were not significantly increased.


2018 ◽  
Vol 12 (4) ◽  
pp. 4044-4055
Author(s):  
S. Srihari ◽  
D. Sanjay Kumar ◽  
Thirumalini S

In this study the performance and emission characteristics of spark ignition genset engine fueled with gasoline and diethyl ether (DEE) blends are carried out. The DEE blends are varied from 3%, 6% and 9% by volume in gasoline. A four-stroke single cylinder constant speed spark ignition engine is used for the experiments. The variation in fuel consumption and exhaust emission with respect to two different inlet air temperatures are studied. The concentration of exhaust emissions such as HC, CO, NOx is observed. The parameters such as inlet air temperature, brake specific fuel consumption, relative air to fuel ratio are also measured. It is noticed that 6% DEE blend in gasoline reduced almost reduced HC emission about 57% and also considerable reduction in CO emission at lower air intake temperature. The addition of diethyl ether has an improvement in performance and significant reduction in HC, CO and NOx emissions.


2021 ◽  
Vol 13 (16) ◽  
pp. 9229
Author(s):  
Ming-Hsien Hsueh ◽  
Chao-Jung Lai ◽  
Meng-Chang Hsieh ◽  
Shi-Hao Wang ◽  
Chia-Hsin Hsieh ◽  
...  

The exhaust emissions from Internal Combustion Engines (ICE) are currently one of the main sources of air pollution. This research presented a method for improving the exhaust gases and the performance of a Spark-Ignition (SI) engine using a water vapor injection system and a Non-Thermal Plasma (NTP) system. These two systems were installed on the intake manifold to investigate their effects on the engine’s performance and the characteristics of exhaust emission using different air/fuel (A/F) ratios and engine speeds. The temperatures of the injected water were adjusted to 5 and 25 °C, using a thermoelectric cooler (TEC) temperature control device. The total hydrocarbons (HC), nitrogen oxide (NOx), and engine torque were measured at different A/F ratios and engine speeds. The results indicated that the adaptation of the water vapor injection system and NTP system increased the content of the combustibles and combustion-supporting substances while achieving better emissions and torque. According to the test results, while the engine torque under 25 °C water+NTP was raised to 7.29%, the HC under 25 °C water+NTP and the NOx under 25 °C water were reduced to 16.31% and 11.88%, respectively. In conclusion, the water vapor injection and the NTP systems installed on the intake manifold could significantly reduce air pollution and improve engine performance for a more sustainable environment.


Sign in / Sign up

Export Citation Format

Share Document