High speed disconnect switch with piezoelectric actuator for medium voltage direct current grids

Author(s):  
M. Bosworth ◽  
D. Soto ◽  
R. Agarwal ◽  
M. Steurer ◽  
T. Damle ◽  
...  
Author(s):  
Salman Aatif ◽  
Haitao Hu ◽  
Fezan Rafiq ◽  
Zhengyou He

AbstractIn contrast to the conventional direct current railway electrification system (DC-RES), the medium voltage direct current (MVDC)-RES is considered promising for long-distance high-speed corridors. In the MVDC-RES, traction substations (TSSs) are placed much farther and train loads are much heavier than in the conventional DC-RES. Hence, the MVDC-RES brings a drastic change in catenary voltage, TSS spacing, and train loading, which affects rail potential and stray current. In this connection, this work performs some significant quantitative analysis of rail potential and stray current in the MVDC-RES environment. An MVDC simulation model is proposed and different grounding schemes are analyzed for a single-train and two TSSs scenario as well as for a multi-train multi-TSS scenario. According to the simulation and analysis, the maximum values of rail potential and stray current at MVDC-RES distances and the maximum safe distance between adjacent TSSs are determined.


Author(s):  
Janik Schaude ◽  
Maxim Fimushkin ◽  
Tino Hausotte

AbstractThe article presents a redesigned sensor holder for an atomic force microscope (AFM) with an adjustable probe direction, which is integrated into a nano measuring machine (NMM-1). The AFM, consisting of a commercial piezoresistive cantilever operated in closed-loop intermitted contact-mode, is based on two rotational axes, which enable the adjustment of the probe direction to cover a complete hemisphere. The axes greatly enlarge the metrology frame of the measuring system by materials with a comparatively high coefficient of thermal expansion. The AFM is therefore operated within a thermostating housing with a long-term temperature stability of 17 mK. The sensor holder, connecting the rotational axes and the cantilever, inserted one adhesive bond, a soldered connection and a geometrically undefined clamping into the metrology circle, which might also be a source of measurement error. It has therefore been redesigned to a clamped senor holder, which is presented, evaluated and compared to the previous glued sensor holder within this paper. As will be shown, there are no significant differences between the two sensor holders. This leads to the conclusion, that the three aforementioned connections do not deteriorate the measurement precision, significantly. As only a minor portion of the positioning range of the piezoelectric actuator is needed to stimulate the cantilever near its resonance frequency, a high-speed closed-loop control that keeps the cantilever within its operating range using this piezoelectric actuator further on as actuator was implemented and is presented within this article.


2014 ◽  
Vol 887-888 ◽  
pp. 1290-1293
Author(s):  
Xu Ming Wang ◽  
Qing Xia Bi

By means of the high speed camera, the arc and drop transfer behaviours of direct current electrode negative MAG welding process are researched. The influences of luminous arc ball on the stability of MAG welding process are analyzed. On this basis, the process interval of DCEN MAG welding is determined. And the influences of wire polarity on wire melting coefficient are compared. By using the shield gas 98%Ar + 2%O2, the stable drop transfer manner can be divided into two kinds: dropwise transfer with low current, and streaming transfer with high current.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 684 ◽  
Author(s):  
Fengmei Su ◽  
Xuechao Qiu ◽  
Feng Liang ◽  
Manabu Tanaka ◽  
Tao Qu ◽  
...  

Nickel nanoparticles were prepared by the arc discharge method. Argon and argon/hydrogen mixtures were used as plasma gas; the evaporation of anode material chiefly resulted in the formation of different arc-anode attachments at different hydrogen concentrations. The concentration of hydrogen was fixed at 0, 30, and 50 vol% in argon arc, corresponding to diffuse, multiple, and constricted arc-anode attachments, respectively, which were observed by using a high-speed camera. The images of the cathode and anode jets were observed with a suitable band-pass filter. The relationship between the area change of the cathode/anode jet and the synchronous voltage/current waveform was studied. By investigating diverse arc-anode attachments, the effect of hydrogen concentration on the features of nickel nanoparticles were investigated, finding that 50 vol% H2 concentration has high productivity, fine crystallinity, and appropriate size distribution. The synthesized nickel nanoparticles were then used as catalysts in a hybrid sodium–air battery. Compared with commercial a silver nanoparticle catalyst and carbon black, nickel nanoparticles have better electrocatalytic performance. The promising electrocatalytic activity of nickel nanoparticles can be ascribed to their good crystallinity, effective activation sites, and Ni/NiO composite structures. Nickel nanoparticles prepared by the direct current (DC) arc discharge method have the potential to be applied as catalysts on a large scale.


2020 ◽  
Vol 178 ◽  
pp. 01006
Author(s):  
Martin Bruha ◽  
Kai Pietiläinen ◽  
Axel Rauber

This paper deals with high-speed electrical drives utilizing power electronic converters (commonly abbreviated as ASD, VFD or VSD). Existing solutions vary mainly on the motor side while the power electronic converter is very similar for all cases. Various advantages as well as technical challenges are discussed and illustrated. At certain stages comparisons between conventional and high-speed drives are made. The paper summarizes the experience of a VFD manufacturer based on state of the art technology in medium voltage and multi-megawatt power range. The authors believe that main complexity around high-speed drives is the motor design while the VFD requires only small adaptations or can sometimes be used directly without any modifications of standard design. The technology readiness is evaluated to be on a medium to high level.


Author(s):  
Ting Yu ◽  
Tushar Chaitanya

MV (Medium Voltage) controller lineup electrical protection is crucial in protecting the equipment from large scale damage upon the occurrence of an electrical fault, reducing the time to restore power, thereby minimizing the impact to liquids pipelines operation. The paper discusses typical electrical failure modes that may occur in MV controller lineups, and demonstrates practical relaying engineering techniques that enable fast and effective fault clearing. Electrical faults in the MV controller lineup are often arcing type, commonly involve ground. Mitigating arc hazards in MV Class E2 controller lineups has traditionally been challenging without sacrificing the protection selectivity. As the paper demonstrates, a relaying scheme with the combined use of high-speed light-sensing and overcurrent detection will effectively mitigate the incident energy, while maintaining the protection selectivity for non-arcing overcurrent events. For new MV controller lineups, in addition to the “high-speed light detection and fault interruption”, zone-selective interlocking (ZSI) can also be a practical solution in improving relay protection speed, thus reduce the chance of severe arc flash occurrences. ZSI is particularly effective for fault occurrences on the line side of the phase CTs, busways or main incoming circuits. The ZSI scheme can be implemented on both Class E2 and circuit breaker (VCB) type MV controller lineups, however, with slightly different trip logic due to the limited fault clearing capability of the contactor. Although there are multiple contributing factors, the direct causes of electrical failures in MV controller lineup are commonly related to improper power cable installation and handling, potentially leading to premature insulation breakdown due mainly to the proximity effect and/or partial discharge. Inadequate cable separation and prolonged fault trip delay can increase the possibility of arcing fault occurrence. This can usually be mitigated through appropriate cable spacing, adequate conductor insulation, and optimized fault detection schemes. The paper provides overviews of the mechanisms of proximity effect and partial discharge propagation, and the modern relaying approaches for accurate fault type discrimination and facilitating fast fault interruption. Two case studies are provided in the paper as an aid in understanding the electrical fault mechanism originated from cable insulation failure, demonstrating the incident energy reduction before and after the implementation of high-speed light detection and fault interruption solutions on an existing MV controller lineup.


2019 ◽  
Vol 28 (5) ◽  
pp. 055035 ◽  
Author(s):  
Liang Wang ◽  
Junkao Liu ◽  
Shuo Chen ◽  
Kai Li ◽  
Yingxiang Liu

Sign in / Sign up

Export Citation Format

Share Document