A high power and low loss GaN HEMT MMIC T/R switch utilizing band-pass/low-pass configuration

Author(s):  
Masatake Hangai ◽  
Ryota Komaru ◽  
Kazuhiko Nakahara ◽  
Yoshitaka Kamo ◽  
Morishige Hieda ◽  
...  
Keyword(s):  
Low Loss ◽  
Gan Hemt ◽  
Low Pass ◽  
2013 ◽  
Vol 56 (2) ◽  
pp. 347-349 ◽  
Author(s):  
Khelifa Hettak ◽  
Tyler N. Ross ◽  
Gabriel Cormier ◽  
Jim S. Wight

1968 ◽  
Vol 11 (1) ◽  
pp. 63-76
Author(s):  
Donald C. Teas ◽  
Gretchen B. Henry

The distributions of instantaneous voltage amplitudes in the cochlear microphonic response recorded from a small segment along the basilar membrane are described by computing amplitude histograms. Comparisons are made between the distributions for noise and for those after the addition to the noise of successively stronger sinusoids. The amplitudes of the cochlear microphonic response to 5000 Hz low-pass noise are normally distributed in both Turn I and Turn III of the guinea pig’s cochlea. The spectral composition of the microphonic from Turn I and from Turn III resembles the output of band-pass filters set at about 4000 Hz, and about 500 Hz, respectively. The normal distribution of cochlear microphonic amplitudes for noise is systematically altered by increasing the strength of the added sinusoid. A decrease of three percent in the number of small amplitude events (±1 standard deviation) in the cochlear microphonic from Turn III is seen when the rms voltage of a 500 Hz sinusoid is at −18 dB re the rms voltage of the noise (at the earphone). When the rms of the sinusoid and noise are equal, the decrease in small voltages is about 25%, but there is also an increase in the number of large voltage amplitudes. Histograms were also computed for the output of an electronic filter with a pass-band similar to Turn III of the cochlea. Strong 500 Hz sinusoids showed a greater proportion of large amplitudes in the filter output than in CM III . The data are interpreted in terms of an anatomical substrate.


2015 ◽  
Vol E98.C (2) ◽  
pp. 156-161
Author(s):  
Hidenori YUKAWA ◽  
Koji YOSHIDA ◽  
Tomohiro MIZUNO ◽  
Tetsu OWADA ◽  
Moriyasu MIYAZAKI
Keyword(s):  
Ka Band ◽  
Low Pass ◽  

Author(s):  
K.R. Shankarkumar ◽  
Gokul Kumar

: Filtering is an important step in the field of image processing to suppress the required parts or to remove any artifacts present in it. There are different types of filters like low pass, high pass, Band pass, IIR, FIR and adaptive filtering etc.., in these filters adaptive filters is an important filter because it is used to remove the noisy signal and images. Least Mean Square filter is a type of an adaptive filtering which is used to remove the noises present in the medical images. The working of LMS is based on the minimization of the difference between the error images using a closed loop feedback. Therefore presented technique called as Q-CSKA. Here the CSKA performs its operation in stages which is based on the nucleus stage. In the traditional CSKA the nucleus stage is depend on the parallel prefix adder in this work it is replaced by the QCA adder. The QCA adder utilizes the less area compared to PPA and it can be realized in Nanometer range also. For multiplexers, And OR Invert, OR and Invert logic is used to reduce the area and delay. Due to these advantages of the QCA, AOI-OAI logic the proposed method outperformed the LMS implementation in area, power, and accuracy and delay, this based five type image noise of medical pictures related to the best technique is out comes. It helps to medicinal practitioner to resolve the symptoms of patient with ease.


2007 ◽  
Vol 16 (04) ◽  
pp. 507-516 ◽  
Author(s):  
SHAHRAM MINAEI ◽  
ERKAN YUCE

In this paper, a universal current-mode second-order active-C filter for simultaneously realizing low-pass, band-pass and high-pass responses is proposed. The presented filter employs only three plus-type second-generation current-controlled conveyors (CCCII+s). This filter needs no critical active and passive component matching conditions and no additional active and passive elements for realizing high output impedance low-pass, band-pass and high-pass characteristics. The angular resonance frequency (ω0) and quality factor (Q) of the proposed resistorless filter can be tuned electronically. To verify the theoretical analysis and to exhibit the performance of the proposed filter, it is simulated with SPICE program.


2005 ◽  
Vol 14 (01) ◽  
pp. 159-164 ◽  
Author(s):  
SUDHANSHU MAHESHWARI ◽  
IQBAL A. KHAN

A novel voltage-mode universal filter employing only two current differencing buffered amplifiers (CDBAs) is proposed. The filter uses four inputs and single output to realize six responses, viz. low-pass, high-pass, inverting band-pass, noninverting band-pass, band-elimination, and all-pass through input selection with independent pole-Q control. Computer simulation results using SPICE are also given to verify the theory.


2002 ◽  
Vol 23 (8) ◽  
pp. 449-451 ◽  
Author(s):  
A. Koudymov ◽  
Xuhong Hu ◽  
K. Simin ◽  
G. Simin ◽  
M. Ali ◽  
...  
Keyword(s):  

2007 ◽  
Author(s):  
Yuanjiang Xiang ◽  
Wenhua Su ◽  
Xiaoyu Dai ◽  
Zhixiang Tang ◽  
Shuangchun Wen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document