The impact of differential "phase" measurement on the characteristics of waiting time jitter

Author(s):  
S.S. Abeysekera ◽  
A. Cantoni
2002 ◽  
Vol 82 (5) ◽  
pp. 759-774 ◽  
Author(s):  
Saman S. Abeysekera ◽  
Antonio Cantoni

1991 ◽  
Vol 27 (1) ◽  
pp. 100-100
Author(s):  
R. Nawrocki ◽  
W. Ehrlich
Keyword(s):  

2020 ◽  
Vol 11 (05) ◽  
pp. 857-864
Author(s):  
Abdulrahman M. Jabour

Abstract Background Maintaining a sufficient consultation length in primary health care (PHC) is a fundamental part of providing quality care that results in patient safety and satisfaction. Many facilities have limited capacity and increasing consultation time could result in a longer waiting time for patients and longer working hours for physicians. The use of simulation can be practical for quantifying the impact of workflow scenarios and guide the decision-making. Objective To examine the impact of increasing consultation time on patient waiting time and physician working hours. Methods Using discrete events simulation, we modeled the existing workflow and tested five different scenarios with a longer consultation time. In each scenario, we examined the impact of consultation time on patient waiting time, physician hours, and rate of staff utilization. Results At baseline scenarios (5-minute consultation time), the average waiting time was 9.87 minutes and gradually increased to 89.93 minutes in scenario five (10 minutes consultation time). However, the impact of increasing consultation time on patients waiting time did not impact all patients evenly where patients who arrive later tend to wait longer. Scenarios with a longer consultation time were more sensitive to the patients' order of arrival than those with a shorter consultation time. Conclusion By using simulation, we assessed the impact of increasing the consultation time in a risk-free environment. The increase in patients waiting time was somewhat gradual, and patients who arrive later in the day are more likely to wait longer than those who arrive earlier in the day. Increasing consultation time was more sensitive to the patients' order of arrival than those with a shorter consultation time.


Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Henning Tesmer ◽  
Rani Razzouk ◽  
Ersin Polat ◽  
Dongwei Wang ◽  
Rolf Jakoby ◽  
...  

In this paper we investigate the temperature dependent behavior of a liquid crystal (LC) loaded tunable dielectric image guide (DIG) phase shifter at millimeter-wave frequencies from 80 GHz to 110 GHz for future high data rate communications. The adhesive, necessary for precise fabrication, is analyzed before temperature dependent behavior of the component is shown, using the nematic LC-mixture GT7-29001. The temperature characterization is conducted by changing the temperature of the LC DIG’s ground plane between −10∘C and 80 ∘C. The orientation of the LC molecules, and therefore the effective macroscopic relative permittivity of the DIG, is changed by inserting the temperature setup in a fixture with rotatable magnets. Temperature independent matching can be observed, while the insertion loss gradually increases with temperature for both highest and lowest permittivity of the LC. At 80 ∘C the insertion loss is up to 1.3dB higher and at −10∘C it is 0.6dB lower than the insertion loss present at 20 ∘C. In addition, the achievable differential phase is reduced with increasing temperature. The impact of molecule alignment to this reduction is shown for the phase shifter and an estimated 85% of the anisotropy is still usable with an LC DIG phase shifter when increasing the temperature from 20 ∘C to 80 ∘C. Higher reduction of differential phase is present at higher frequencies as the electrical length of the phase shifter increases. A maximum difference in differential phase of 72∘ is present at 110 GHz, when increasing the temperature from 20 ∘C to 80 ∘C. Nevertheless, a well predictable, quasi-linear behavior can be observed at the covered temperature range, highlighting the potential of LC-based dielectric components at millimeter wave frequencies.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 113
Author(s):  
Destin Bamokina Moanda ◽  
Martin Lehmann ◽  
Peter Niemz

Although glueing softwood is well mastered by the industry, predicting and controlling bond quality for hardwood is still challenging after years of research. Parameters such as the adhesive type, resin–hardener ratio, and the penetration behaviour of the wood are determinants for the bond quality. The aim of this work was to assess to what extent the glueing behaviour of beechwood can be improved by using structural planing. The different surfacing methods were characterised by their roughness. The bond strength of the micro-structured surfaces was determined according to EN 302-1, and the delamination resistance was tested as indicated by EN 302-2 for type I adhesives. Micro-structured surfaces were compared with different surfaces (generated by surfacing methods such as dull/sharp planing and sanding). In dry test conditions, all surfacing methods gave satisfying results. In the wet stage, the bond strength on the finer micro-structured surface slightly outperformed the coarse structure surface. For the delamination resistance, a clear improvement could be observed for melamine-formaldehyde-bonded specimens since, when using the recommended amount of adhesive, micro-structured surfaces fulfilled the requirements. Nevertheless, structural planing cannot lead to a reduction in the applied grammage since no sample with a smaller amount fulfilled EN 302-2 requirements even by observing the recommended closed assembly waiting time. Adhesion area enlargement of the micro-structuring is minor. The good delamination performance without waiting time (CAT) is not caused by surface enlargement, since finer micro-structured surface with negligible area increase and delivered even better delamination resistance. Subsurface analysis should be carried out to thoroughly investigate this phenomenon.


2020 ◽  
Author(s):  
Yu-xuan Li ◽  
Chang-zheng He ◽  
Yi-chen Liu ◽  
Peng-yue Zhao ◽  
Xiao-lei Xu ◽  
...  

Abstract Background: The coronavirus disease 2019 (COVID-19) has been declared a global pandemic by the World Health Organization. Patients with cancer are more likely to incur poor clinical outcomes. Due to the prevailing pandemic, we propose some surgical strategies for gastric cancer patients. Methods: The ‘COVID-19’ period was defined as occurring between 2020-01-20 and 2020-03-20. The enrolled patients were divided into two groups, pre-COVID-19 group (PCG) and COVID-19 group (CG). A total of 109 patients with gastric cancer were enrolled in this study. Results: The waiting time before admission increased by 4 days in the CG (PCG: 4.5 [IQR: 2, 7.8] vs. CG: 8.0 [IQR: 2,20]; p=0.006). More patients had performed chest CT scans besides abdominal CT before admission during the COVID-19 period (PCG: 22 [32%] vs. CG: 30 [73%], p=0.001). After admission during the COVID period, the waiting time before surgery was longer (PCG: 3[IQR: 2,5] vs. CG: 7[IQR: 5,9]; p<0.001), more laparoscopic surgeries were performed (PCG: 51[75%] vs. CG: 38[92%], p=0.021), and hospital stay period after surgery was longer (7[IQR: 6,8] vs.9[IQR:7,11]; p<0.001). In addition, the total cost of hospitalization increased during this period, (PCG: 9.22[IQR:7.82,10.97] vs. CG: 10.42[IQR:8.99,12.57]; p=0.006). Conclusion: This study provides an opportunity for our surgical colleagues to reflect on their own services and any contingency plans they may have to tackle the COVID-19 crisis.


2017 ◽  
Vol 123 ◽  
pp. S1014
Author(s):  
Y. Tsang ◽  
P. Nariyangadu ◽  
N. Shah ◽  
P. Ostler ◽  
P. Hoskin

2018 ◽  
Vol 36 (18) ◽  
pp. 4046-4050 ◽  
Author(s):  
Ke Chen ◽  
Min Guo ◽  
Yang Yang ◽  
Kang Liu ◽  
Wanjin Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document