PCI Express® 6.0 Specification at 64.0 GT/s with PAM-4 signaling: a low latency, high bandwidth, high reliability and cost-effective interconnect

Author(s):  
Debendra Das Sharma
2019 ◽  
Vol 27 (6) ◽  
pp. 2354-2362 ◽  
Author(s):  
Qian Chen ◽  
Xiao Juan Zhang ◽  
Wei Lih Lim ◽  
Yuen Sam Kwok ◽  
Sumei Sun

2018 ◽  
Author(s):  
Phanidra Palagummi ◽  
Vedant Somani ◽  
Krishna M. Sivalingam ◽  
Balaji Venkat

Networking connectivity is increasingly based on wireless network technologies, especially in developing nations where the wired network infrastructure is not accessible to a large segment of the population. Wireless data network technologies based on 2G and 3G are quite common globally; 4G-based deployments are on the rise during the past few years. At the same time, the increasing high-bandwidth and low-latency requirements of mobile applications has propelled the Third Generation Partnership Project (3GPP) standards organization to develop standards for the next generation of mobile networks, based on recent advances in wireless communication technologies. This standard is called the Fifth Generation (5G) wireless network standard. This paper presents a high-level overview of the important architectural components, of the advanced communication technologies, of the advanced networking technologies such as Network Function Virtualization and other important aspects that are part of the 5G network standards. The paper also describes some of the common future generation applications that require low-latency and high-bandwidth communications.


Photonics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 11
Author(s):  
Fulong Yan ◽  
Changshun Yuan ◽  
Chao Li ◽  
Xiong Deng

Interconnecting networks adopting Fast Optical Switches (FOS) can achieve high bandwidth, low latency, and low power consumption. We propose and demonstrate a novel interconnecting topology based on FOS (FOSquare) with distributed fast flow control which is suitable for HPC infrastructures. We also present an Optimized Mapping (OPM) algorithm that maps the most communication-related processes inside a rack. We numerically investigate and compare the network performance of FOSquare with Leaf-Spine under real traffic traces collected by running multiple applications (CG, MG, MILC, and MINI_MD) in an HPC infrastructure. The numerical results show that the FOSquare can reduce >10% latency with respect to Leaf-Spine under the scenario of 16 available cores.


Author(s):  
Jianhua He ◽  
Guangheng Zhao ◽  
Lu Wang ◽  
Xue Sun ◽  
Lei Yang

AbstractIn this paper, we investigate the secrecy performance of short-packet transmissions in ultra-reliable and low-latency communications (URLLC). We consider the scenario where a multi-antenna source communicates with a single-antenna legitimate receiver requiring ultra-high reliability and low latency, in the presence of a single-antenna eavesdropper. In order to safeguard URLLC, the source transmits the artificial noise (AN) signal together with the confidential signal to confuse the eavesdropper. We adopt a lower bound on the maximal secrecy rate as the secrecy performance metric for short-packet transmissions in URLLC, which takes the target decoding error probabilities at the legitimate receiver and the eavesdropper into account. Using this metric, we first derive a compact expression of the generalized secrecy outage probability (SOP). Then, we formally prove that the generalized SOP is a convex function with respect to the power allocation factor between the confidential signal and the AN signal. We further determine the optimal power allocation factor that minimizes the generalized SOP. The results presented in this work can be useful for designing new secure transmission schemes for URLLC.


Author(s):  
Alexey Shapin ◽  
Kittipong Kittichokechar ◽  
Niklas Andgart ◽  
Marten Sundberg ◽  
Gustav Wikstrom

Sign in / Sign up

Export Citation Format

Share Document