Effects of Distinct Robot Navigation Strategies on Human Behavior in a Crowded Environment

Author(s):  
Christoforos Mavrogiannis ◽  
Alena M. Hutchinson ◽  
John Macdonald ◽  
Patricia Alves-Oliveira ◽  
Ross A. Knepper
Robotica ◽  
2009 ◽  
Vol 28 (3) ◽  
pp. 465-475 ◽  
Author(s):  
Edith Heußlein ◽  
Blair W. Patullo ◽  
David L. Macmillan

SUMMARYBiomimetic applications play an important role in informing the field of robotics. One aspect is navigation – a skill automobile robots require to perform useful tasks. A sub-area of this is search strategies, e.g. for search and rescue, demining, exploring surfaces of other planets or as a default strategy when other navigation mechanisms fail. Despite that, only a few approaches have been made to transfer biological knowledge of search mechanisms on surfaces along the ground into biomimetic applications. To provide insight for robot navigation strategies, this study describes the paths a crayfish used to explore terrain. We tracked movement when different sets of sensory input were available. We then tested this algorithm with a computer model crayfish and concluded that the movement of C. destructor has a specialised walking strategy that could provide a suitable baseline algorithm for autonomous mobile robots during navigation.


Robotica ◽  
2005 ◽  
Vol 23 (6) ◽  
pp. 709-720 ◽  
Author(s):  
F. Belkhouche ◽  
B. Belkhouche

This paper deals with a method for robot navigation towards a moving goal. The goal maneuvers are not a priori known to the robot. Our method is based on the use of the kinematics equations of the robot and the goal combined with geometrical rules. First a kinematics model for the tracking problem is derived and two strategies are suggested for robot navigation, namely the velocity pursuit guidance law and the deviated pursuit guidance law. It turns out that in both cases, the robot's angular velocity is equal to the line of sight angle rate. Important properties of the navigation strategies are discussed and proven. In the presence of obstacles, two navigation modes are used: the tracking mode, which has a global aspect and the obstacle avoidance mode, which has a local aspect. In the obstacle avoidance mode, a polar diagram combining information about obstacles and directions corresponding to the pursuit is constructed. An extensive simulation study is carried out, where the efficiency of both strategies is illustrated for different scenarios.


2018 ◽  
Vol 8 (11) ◽  
pp. 2205 ◽  
Author(s):  
Zhixian Chen ◽  
Chao Song ◽  
Yuanyuan Yang ◽  
Baoliang Zhao ◽  
Ying Hu ◽  
...  

For a mobile robot, navigation skills that are safe, efficient, and socially compliant in crowded, dynamic environments are essential. This is a particularly challenging problem as it requires the robot to accurately predict pedestrians’ movements, analyse developing traffic situations, and plan its own path or trajectory accordingly. Previous approaches still exhibit low accuracy for pedestrian trajectory prediction, and they are prone to generate infeasible trajectories under complex crowded conditions. In this paper, we develop an improved socially conscious model to learn and predict a pedestrian’s future trajectory. To generate more efficient and safer trajectories in a changing crowed space, an online path planning algorithm considering pedestrians’ predicted movements and the feasibility of the candidate trajectories is proposed. Then, multiple traffic states are defined to guide the robot finding the optimal navigation strategies under changing traffic situations in a crowded area. We have demonstrated the performance of our approach outperforms state-of-the-art approaches with public datasets, in low-density and simulated medium-density crowded scenarios.


Author(s):  
Yuichi Kobayashi ◽  
Takeshi Sugimoto ◽  
Kazuhito Tanaka ◽  
Yuki Shimomura ◽  
Francisco J. Arjonilla Garcia ◽  
...  

AbstractTo achieve robot navigation in crowded environments having high densities of moving people, it is insufficient to simply consider humans as moving obstacles and avoid collisions with them. That is, the impact of an approaching robot on human movements must be considered as well. Moreover, various navigation methods have been tested in their own environments in the literature, which made them difficult to compare with one another. Thus, we propose an autonomous robot navigation method in densely crowded environments for data-based predictions of robot-human interactions, together with a reproducible experimental test under controlled conditions. Based on localized positional relationships with humans, this method extracts multiple alternative paths, which can implement either following or avoidance, and selects an optimal path based on time efficiency. Each path is selected using neural networks, and the various paths are evaluated by predicting the position after a given amount of time has elapsed. These positions are then used to calculate the time required to reach a certain target position to ensure that the optimal path can be determined. We trained the predictor using simulated data and conducted experiments using an actual mobile robot in an environment where humans were walking around. Using our proposed method, collisions were avoided more effectively than when conventional navigation methods were used, and navigation was achieved with good time efficiency, resulting in an overall reduction in interference with humans. Thus, the proposed method enables an effective navigation in a densely crowded environment, while collecting human-interaction experience for further improvement of its performance in the future.


1975 ◽  
Vol 20 (1) ◽  
pp. 75-75
Author(s):  
RALPH H. TURNER
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document