A novel stereo vision tracking system used in air traffic collision risk model

Author(s):  
Shams M. Shahadat ◽  
Yih-Ru Huang ◽  
John W. Dyer
1984 ◽  
Vol 37 (1) ◽  
pp. 117-124
Author(s):  
S. Nagaoka

The mathematical collision risk model developed by Reich can be used for evaluating the current air traffic control (ATC) separation minima. This model requires such parameters as volume of traffic, navigational errors of aircraft and the structure of routes. The navigational errors are closely related to the probability of overlap, which is one of the most important parameters for the model.Distributions of navigational errors have been studied by many researchers since the advent of the collision risk model. Because data collection on the navigational errors in the vertical dimension is expensive and time-consuming, there are few examples of observed data. Thus, at present, data on the probability of overlap in the vertical dimension are not available in a large enough sample to derive any conclusions.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2528
Author(s):  
Songlin Bi ◽  
Yonggang Gu ◽  
Jiaqi Zou ◽  
Lianpo Wang ◽  
Chao Zhai ◽  
...  

A high precision optical tracking system (OTS) based on near infrared (NIR) trinocular stereo vision (TSV) is presented in this paper. Compared with the traditional OTS on the basis of binocular stereo vision (BSV), hardware and software are improved. In the hardware aspect, a NIR TSV platform is built, and a new active tool is designed. Imaging markers of the tool are uniform and complete with large measurement angle (>60°). In the software aspect, the deployment of extra camera brings high computational complexity. To reduce the computational burden, a fast nearest neighbor feature point extraction algorithm (FNNF) is proposed. The proposed method increases the speed of feature points extraction by hundreds of times over the traditional pixel-by-pixel searching method. The modified NIR multi-camera calibration method and 3D reconstruction algorithm further improve the tracking accuracy. Experimental results show that the calibration accuracy of the NIR camera can reach 0.02%, positioning accuracy of markers can reach 0.0240 mm, and dynamic tracking accuracy can reach 0.0938 mm. OTS can be adopted in high-precision dynamic tracking.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3897 ◽  
Author(s):  
JeeWoong Park ◽  
Yong K. Cho ◽  
Ali Khodabandelu

Over the last decade, researchers have explored various technologies and methodologies to enhance worker safety at construction sites. The use of advanced sensing technologies mainly has focused on detecting and warning about safety issues by directly relying on the detection capabilities of these technologies. Until now, very little research has explored methods to quantitatively assess individual workers’ safety performance. For this, this study uses a tracking system to collect and use individuals’ location data in the proposed safety framework. A computational and analytical procedure/model was developed to quantify the safety performance of individual workers beyond detection and warning. The framework defines parameters for zone-based safety risks and establishes a zone-based safety risk model to quantify potential risks to workers. To demonstrate the model of safety analysis, the study conducted field tests at different construction sites, using various interaction scenarios. Probabilistic evaluation showed a slight underestimation and overestimation in certain cases; however, the model represented the overall safety performance of a subject quite well. Test results showed clear evidence of the model’s ability to capture safety conditions of workers in pre-identified hazard zones. The developed approach presents a way to provide visualized and quantified information as a form of safety index, which has not been available in the industry. In addition, such an automated method may present a suitable safety monitoring method that can eliminate human deployment that is expensive, error-prone, and time-consuming.


1997 ◽  
Vol 30 (6) ◽  
pp. 641-645
Author(s):  
Kamel Bouchefra ◽  
Roger Reynaud ◽  
Thierry Maurin

Author(s):  
Muthukkumar S. Kadavasal ◽  
Abhishek Seth ◽  
James H. Oliver

A multi modal teleoperation interface is introduced featuring an integrated virtual reality based simulation augmented by sensors and image processing capabilities on-board the remotely operated vehicle. The proposed virtual reality interface fuses an existing VR model with live video feed and prediction states, thereby creating a multi modal control interface. Virtual reality addresses the typical limitations of video-based teleoperation caused by signal lag and limited field of view thereby allowing the operator to navigate in a continuous fashion. The vehicle incorporates an on-board computer and a stereo vision system to facilitate obstacle detection. A vehicle adaptation system with a priori risk maps and real state tracking system enables temporary autonomous operation of the vehicle for local navigation around obstacles and automatic re-establishment of the vehicle’s teleoperated state. As both the vehicle and the operator share absolute autonomy in stages, the operation is referred to as mixed autonomous. Finally, the system provides real time update of the virtual environment based on anomalies encountered by the vehicle. The system effectively balances the autonomy between human and on board vehicle intelligence. The stereo vision based obstacle avoidance system is initially implemented on video based teleoperation architecture and experimental results are presented. The VR based multi modal teleoperation interface is expected to be more adaptable and intuitive when compared to other interfaces.


Sign in / Sign up

Export Citation Format

Share Document