Sliding-mode-based disturbance rejection control of nonlinear power systems with renewable sources

Author(s):  
Hong Liu ◽  
Dianwei Qian
2011 ◽  
Vol 66-68 ◽  
pp. 1422-1427
Author(s):  
Ting You ◽  
Pei Jiang Li

For optimal control of synchronous machine, chattering phenomenon will appear if traditional slider control is adopted because permanent magnet synchronous machine is a complex nonlinear time-dependent system with strong coupling of current and rotational speed to cause the deterioration of system control performance with load or load disturbance. In this article, based on the mathematical model of permanent magnet synchronous machine, a control system for it, which combines sliding mode control and active disturbance rejection control, is proposed to improve the dynamic performance and robustness of control system. In the control system, sliding mode control is adopted to control the inner current of machine and active disturbance rejection control is adopted to control the outer speed. The load disturbance of system is also estimated and offset. The results of matlab simulation show that the control system can eliminate serious chattering phenomenon existing in sliding mode control, improves the robustness of system for load and system parameter disturbance as well as has great dynamic and static performance.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nigar Ahmed ◽  
Syed Awais Ali Shah

PurposeIn this research paper, an adaptive output-feedback robust active disturbance rejection control (RADRC) is designed for the multiple input multiple output (MIMO) quadrotor attitude model subject to unwanted uncertainties and disturbances (UUDs).Design/methodology/approachIn order to achieve the desired control objectives in the presence of UUDs, the low pass filter (LPF) and extended high gain observer (EHGO) methods are used for the estimation of matched and mismatched UUDs, respectively. Furthermore, for solving the chattering incurred in the standard sliding mode control (SMC), a multilayer sliding mode surface is constructed. For formulating the adaptive output-feedback RADRC algorithm, the EHGO, LPF and SMC schemes are combined using the separation principle.FindingsThe findings of this research work include the design of an adaptive output-feedback RADRC with the ability to negate the UUDs as well as estimate the unknown states of the quadrotor attitude model. In addition, the chattering problem is addressed by designing a modified SMC scheme based on the multilayer sliding mode surface obtained by utilizing the estimated state variables. This sliding mode surface is also used to obtain the adaptive criteria for the switching design gain parameters involved in the SMC. Moreover, the requirement of high design gain parameters in the EHGO is solved by combining it with the LPF.Originality/valueDesigning the flight control techniques while assuming that the state variables are available is a common practice. In addition, to obtain robustness, the SMC technique is widely used. However, in practice, the state variables might not be available due to unknown parameters and uncertainties, as well as the chattering due to SMC reduces the performances of the actuators. Hence, in this paper, an adaptive output-feedback RADRC technique is designed to solve the problems of UUDs and chattering.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 357 ◽  
Author(s):  
Chunlin Song ◽  
Changzhu Wei ◽  
Feng Yang ◽  
Naigang Cui

This article presents a fixed-time active disturbance rejection control approach for the attitude control problem of quadrotor unmanned aerial vehicle in the presence of dynamic wind, mass eccentricity and an actuator fault. The control scheme applies the feedback linearization technique and enhances the performance of the traditional active disturbance rejection control (ADRC) based on the fixed-time high-order sliding mode method. A switching-type uniformly convergent differentiator is used to improve the extended state observer for estimating and attenuating the lumped disturbance more accurately. A multivariable high-order sliding mode feedback law is derived to achieve fixed time convergence. The timely convergence of the designed extended state observer and the feedback law is proved theoretically. Mathematical simulations with detailed actuator models and real time experiments are performed to demonstrate the robustness and practicability of the proposed control scheme.


Author(s):  
Zhang He ◽  
Zhao Jiyun ◽  
Wang Yunfei ◽  
Zhang Zhonghai ◽  
Ding Haigang ◽  
...  

This study proposes a compound control method based on sliding mode and active disturbance rejection control to address the difficulty of controlling the cutting head for boom-type roadheader with parameter changes and uncertain disturbances. The fastest discrete tracking differentiator and extended state observer based on the traditional active disturbance rejection control are designed. Additionally, the controller of the sliding mode and active disturbance rejection control is constructed. Theoretical analysis indicates that the proposed controller ensures asymptotic stability, despite the existing uncertain disturbances. Moreover, a system based on AMESim and MATLAB/Simulink Co-simulation model is developed to further verify the performance of proposed algorithm. Compared with traditional active disturbance rejection control, proportional-integral-derivative(PID) and sliding mode control, co-simulation results demonstrate that the sliding mode active disturbance rejection compound control improves the tracking accuracy and robustness of the position servo system.


Author(s):  
Haoping Wang ◽  
Yeqing Lu ◽  
Yang Tian ◽  
Nicolai Christov

This article deals with the control problem of 7-degrees of freedom full-car suspension system which takes into account the spring-damper nonlinearities, unmodeled dynamics and external disturbances. The existing active disturbance rejection control uses an extended state observer to estimate the “total disturbance” and eliminate it with state error feedback. In this article, a new type of active disturbance rejection control is developed to improve the ride comfort of full car suspension systems taking into account the suspension nonlinearities and actuator saturation. The proposed controller combines active disturbance rejection control and fuzzy sliding mode control and is called Fuzzy Sliding Mode active disturbance rejection control. To validate the system mathematical model and analyze the controller performance, a virtual prototype is built in Adams. The simulation results demonstrate better performance of Fuzzy Sliding Mode active disturbance rejection control compared to the existing active disturbance rejection control.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1358 ◽  
Author(s):  
Boning Wu ◽  
Xuesong Zhou ◽  
Youjie Ma

The DC distribution network has more advantages in power transmission, grid connection of distributed energy, and reliability of power supply when compared with AC distribution network, but there are still many problems in the development of DC distribution network. DC bus voltage control is one of the hot issues in the research of DC distribution network. To solve this problem, in this paper, a new type of sliding mode active disturbance rejection control (SMADRC) controller for AC/DC converters is designed and applied to the voltage outer loop. The linear extended state observer (LESO) can observe the state variables and the total disturbance of the system. The SMADRC is composed of a sliding mode controller, LESO, and disturbance compensator, which can compensate the total disturbance observed by LESO properly. Therefore, it improves the dynamic. At the same time, it can also reduce the system jitter that is caused by sliding mode controller. The state variables that are observed by the LESO are used in the design of sliding mode controller, which greatly simplifies the design of sliding mode controller. Finally, the simulation results of Matlab/Simulink show that the controller has good start-up performance and strong robustness.


Sign in / Sign up

Export Citation Format

Share Document