Robust control of DC motor drives using higher-order integral terminal sliding mode

Author(s):  
Suneel K. Kommuri ◽  
G. Shafiq ◽  
Jagat J. Rath ◽  
Kalyana C. Veluvolu
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Tan-No Nguyen ◽  
Thanh-Binh Pham ◽  
Van-Trong Hoang ◽  
Tan-Tien Nguyen ◽  
Viet-Long Nguyen ◽  
...  

This paper proposes an efficient sensorless speed estimation approach for electric servo drives based on the full-order nonsingular terminal sliding mode observer (FONTSM) with the application of DC motor drives. In this method, a specific full-order terminal sliding mode manifold is utilised for the observer design which results in the elimination of the chattering and avoiding the singularity phenomenon of conventional and terminal sliding modes. Here, speed and armature back emf can be directly estimated from the relevant observer’s inputs which are continuous instead of being discontinuous high-frequency “switching” signals. The efficiencies and advantages of this approach have been proven and validated in both simulation and experimental results.


Author(s):  
Dalong Tian ◽  
Jianguo Guo

This study aims to develop an advanced integral terminal sliding-mode robust control method using a disturbance observer (DO) to suppress the forced vibration of a large space intelligent truss structure (LSITS). First, the dynamics of the electromechanical coupling of the piezoelectric stack actuator and the LSITS, based on finite element and Lagrangian methods, are established. Subsequently, to constrict the vibration of the structure, a novel integral terminal sliding-mode control (ITSMC) law for the DO is used to estimate the parameter perturbation of the LSITS based on a continuous external disturbance. Simulation results show that, under a forced vibration and compared with the ITSMC system without a DO, the displacement amplitude of the ITSMC system with the DO is effectively reduced. In the case where the model parameters of the LSITS deviate by ±50%, and an unknown continuous external disturbance exists, the control system with the DO can adequately attenuate the structural vibration and realize robust control. Concurrently, the voltage of the employed piezoelectric stack actuator is reduced, and voltage jitter is alleviated.


Sign in / Sign up

Export Citation Format

Share Document