Broyden method for the self-consistent solution of Schrodinger and Poisson equations

Author(s):  
Sun Lin ◽  
Yang Wenwei ◽  
Xiang Cailan ◽  
Yu Zhiping ◽  
Tian Lilin
1999 ◽  
Vol 592 ◽  
Author(s):  
C. Raynaud ◽  
J.L. Autran ◽  
P. Masson ◽  
M. Bidaud ◽  
A. Poncet

ABSTRACTThe one-dimensional Schridinger and Poisson equations have been numerically solved in metal-oxide-semiconductor devices using a three-point finite difference scheme with a non-uniform mesh size. The capacitance-voltage characteristic of the structure has been calculated via this self-consistent approach and results have been compared with data obtained from the resolution of Poisson equation using different approximated methods based on the Boltzmann statistic with and without a first order quantum effect correction or the exact Fermi-Dirac statistic. The present work permits to evaluate and quantify the errors made by these approximations in determining the thickness of ultra-thin oxides.


Open Physics ◽  
2004 ◽  
Vol 2 (1) ◽  
Author(s):  
G. Zharkov

AbstractThe self-consistent solutions of the nonlinear Ginzburg-Landau equations, which describe the behavior of a superconducting mesoscopic cylinder in an axial magnetic field H (provided there are no vortices inside the cylinder), are studied. Different, vortex-free states (M-, e-, d-, p-), which exist in a superconducting cylinder, are described. The critical fields (H 1, H 2, H p, H i, H r), at which the first or second order phase transitions between different states of the cylinder occur, are found as functions of the cylinder radius R and the GL-parameter $$\kappa $$ . The boundary $$\kappa _c (R)$$ , which divides the regions of the first and second order (s, n)-transitions in the icreasing field, is found. It is found that at R→∞ the critical value, is $$\kappa _c = 0.93$$ . The hysteresis phenomena, which appear when the cylinder passes from the normal to superconducting state in the decreasing field, are described. The connection between the self-consistent results and the linearized theory is discussed. It is shown that in the limiting case $$\kappa \to {1 \mathord{\left/ {\vphantom {1 {\sqrt 2 }}} \right. \kern-\nulldelimiterspace} {\sqrt 2 }}$$ and R ≫ λ (λ is the London penetration length) the self-consistent solution (which correponds to the socalled metastable p-state) coincides with the analitic solution found from the degenerate Bogomolnyi equations. The reason for the existence of two critical GL-parameters $$\kappa _0 = 0.707$$ and $$\kappa _0 = 0.93$$ in, bulk superconductors is discussed.


2017 ◽  
Vol 27 (11) ◽  
pp. 2111-2145 ◽  
Author(s):  
Yeping Li ◽  
Peicheng Zhu

We shall investigate the asymptotic stability, toward a nonlinear wave, of the solution to an outflow problem for the one-dimensional compressible Navier–Stokes–Poisson equations. First, we construct this nonlinear wave which, under suitable assumptions, is the superposition of a stationary solution and a rarefaction wave. Then it is shown that the nonlinear wave is asymptotically stable in the case that the initial data are a suitably small perturbation of the nonlinear wave. The main ingredient of the proof is the [Formula: see text]-energy method that takes into account both the effect of the self-consistent electrostatic potential and the spatial decay of the stationary part of the nonlinear wave.


1990 ◽  
Vol 68 (8) ◽  
pp. 4071-4076 ◽  
Author(s):  
I‐H. Tan ◽  
G. L. Snider ◽  
L. D. Chang ◽  
E. L. Hu

Sign in / Sign up

Export Citation Format

Share Document