RLS lattice and circular lattice with real time variable sliding-window length

Author(s):  
I.Y.H. Gu
2019 ◽  
Vol 9 (22) ◽  
pp. 4833 ◽  
Author(s):  
Ardo Allik ◽  
Kristjan Pilt ◽  
Deniss Karai ◽  
Ivo Fridolin ◽  
Mairo Leier ◽  
...  

The aim of this study was to develop an optimized physical activity classifier for real-time wearable systems with the focus on reducing the requirements on device power consumption and memory buffer. Classification parameters evaluated in this study were the sampling frequency of the acceleration signal, window length of the classification fragment, and the number of classification features, found with different feature selection methods. For parameter evaluation, a decision tree classifier was created based on the acceleration signals recorded during tests, where 25 healthy test subjects performed various physical activities. Overall average F1-score achieved in this study was about 0.90. Similar F1-scores were achieved with the evaluated window lengths of 5 s (0.92 ± 0.02) and 3 s (0.91 ± 0.02), while classification performance with 1 s were lower (0.87 ± 0.02). Tested sampling frequencies of 50 Hz, 25 Hz, and 13 Hz had similar results with most classified activity types, with an exception of outdoor cycling, where differences were significant. Using forward sequential feature selection enabled the decreasing of the number of features from initial 110 features to about 12 features without lowering the classification performance. The results of this study have been used for developing more efficient real-time physical activity classifiers.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Yan-Guo Zhao ◽  
Feng Zheng ◽  
Zhan Song

Sliding-window based multiclass hand posture detections are often performed by detecting postures of each predefined category using an independent detector, which makes it lack efficiency and results in high postures confusion rates in real-time applications. To tackle such problems, in this work, an efficient cascade detector that integrates multiple softmax-based binary (SftB) models and a softmax-based multiclass (SftM) model is investigated to perform multiclass posture detection in parallel. The SftB models are used to distinguish the predefined postures from the background regions, and the SftM model is applied to discriminate among all the predefined hand posture categories. Another usage of the cascade structure is that it could effectively decompose the complexity of background pattern space and therefore improve the detection accuracy. In addition, to balance the detection accuracy and efficiency, the HOG features of increasing resolutions will be adopted by classifiers of increasing stage-levels in the cascade structure. The experiments are implemented under various scenarios with complicated background and challenging lightings. Results show the superiority of the proposed SftB classifiers over the traditional binary classifiers such as logistic regression, as well as the accuracy and efficiency improvements brought by the softmax-based cascade architecture compared with the noncascade multiclass softmax detectors.


2021 ◽  
Author(s):  
◽  
Jiawen Chua

<p>In most real-time systems, particularly for applications involving system identification, latency is a critical issue. These applications include, but are not limited to, blind source separation (BSS), beamforming, speech dereverberation, acoustic echo cancellation and channel equalization. The system latency consists of an algorithmic delay and an estimation computational time. The latter can be avoided by using a multi-thread system, which runs the estimation process and the processing procedure simultaneously. The former, which consists of a delay of one window length, is usually unavoidable for the frequency-domain approaches. For frequency-domain approaches, a block of data is acquired by using a window, transformed and processed in the frequency domain, and recovered back to the time domain by using an overlap-add technique.  In the frequency domain, the convolutive model, which is usually used to describe the process of a linear time-invariant (LTI) system, can be represented by a series of multiplicative models to facilitate estimation. To implement frequency-domain approaches in real-time applications, the short-time Fourier transform (STFT) is commonly used. The window used in the STFT must be at least twice the room impulse response which is long, so that the multiplicative model is sufficiently accurate. The delay constraint caused by the associated blockwise processing window length makes most the frequency-domain approaches inapplicable for real-time systems.  This thesis aims to design a BSS system that can be used in a real-time scenario with minimal latency. Existing BSS approaches can be integrated into our system to perform source separation with low delay without affecting the separation performance. The second goal is to design a BSS system that can perform source separation in a non-stationary environment.  We first introduce a subspace approach to directly estimate the separation parameters in the low-frequency-resolution time-frequency (LFRTF) domain. In the LFRTF domain, a shorter window is used to reduce the algorithmic delay of the system during the signal acquisition, e.g., the window length is shorter than the room impulse response. The subspace method facilitates the deconvolution of a convolutive mixture to a new instantaneous mixture and simplifies the estimation process.  Second, we propose an alternative approach to address the algorithmic latency problem. The alternative method enables us to obtain the separation parameters in the LFRTF domain based on parameters estimated in the high-frequency-resolution time-frequency (HFRTF) domain, where the window length is longer than the room impulse response, without affecting the separation performance.  The thesis also provides a solution to address the BSS problem in a non-stationary environment. We utilize the ``meta-information" that is obtained from previous BSS operations to facilitate the separation in the future without performing the entire BSS process again. Repeating a BSS process can be computationally expensive. Most conventional BSS algorithms require sufficient signal samples to perform analysis and this prolongs the estimation delay. By utilizing information from the entire spectrum, our method enables us to update the separation parameters with only a single snapshot of observation data. Hence, our method minimizes the estimation period, reduces the redundancy and improves the efficacy of the system.  The final contribution of the thesis is a non-iterative method for impulse response shortening. This method allows us to use a shorter representation to approximate the long impulse response. It further improves the computational efficiency of the algorithm and yet achieves satisfactory performance.</p>


2018 ◽  
Vol 08 (06) ◽  
pp. 147-161 ◽  
Author(s):  
Jonathan W. Fox ◽  
Ahmad Khalilian ◽  
Young J. Han ◽  
Phillip B. Williams ◽  
Ali Mirzakhani Nafchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document