An integrated design flow for a via-configurable gate array

Author(s):  
Yajun Ran ◽  
M. Marek-Sadowska
Author(s):  
José Capmany ◽  
Daniel Pérez

The field programmable photonic gate array (FPPGA) is an integrated photonic device/subsystem that operates similarly to a field programmable gate array in electronics. It is a set of programmable photonics analogue blocks (PPABs) and of reconfigurable photonic interconnects (RPIs) implemented over a photonic chip. The PPABs provide the building blocks for implementing basic optical analogue operations (reconfigurable/independent power splitting and phase shifting). Broadly they enable reconfigurable processing just like configurable logic elements (CLE) or programmable logic blocks (PLBs) carry digital operations in electronic FPGAs or configurable analogue blocks (CABs) carry analogue operations in electronic field programmable analogue arrays (FPAAs). Reconfigurable interconnections between PPABs are provided by the RPIs. This chapter presents basic principles of integrated FPPGAs. It describes their main building blocks and discusses alternatives for their high-level layouts, design flow, technology mapping and physical implementation. Finally, it shows that waveguide meshes lead naturally to a compact solution.


2021 ◽  
Vol 26 (5) ◽  
pp. 1-18
Author(s):  
Guoqi Xie ◽  
Hao Peng ◽  
Xiongren Xiao ◽  
Yao Liu ◽  
Renfa Li

With Internet of things technologies, billions of embedded devices, including smart gateways, smart phones, and mobile robots, are connected and deeply integrated. Almost all these embedded devices are battery-constrained and energy-limited systems. In recent years, several works used energy pre-assignment techniques to study the dynamic energy-constrained scheduling of a parallel application in heterogeneous multicore embedded systems. However, the existing energy pre-assignment techniques cannot satisfy the actual energy constraint, because it is the joint constraint on dynamic energy and static energy. Further, the modeling and verification of these works are based on the simulations, which have not been verified in real embedded devices. This study aims to propose a dynamic and static energy-constrained scheduling framework in heterogeneous multicore embedded devices. Solving this problem can utilize existing energy pre-assignment techniques, but it requires a deeply integrated design flow and methodology. The design flow consists of four processes: (1) power and energy modeling; (2) power parameter measurement; (3) basic framework design including energy pre-assignment; and (4) framework optimization. Each design flow has corresponding design methodology. Both our theoretical analysis and practical verification using the low-power ODROID-XU4 device confirm the effectiveness of the proposed framework.


2014 ◽  
Vol 599-601 ◽  
pp. 220-224
Author(s):  
Xuan Lin Ye

The problem of the actual production process is based on the concentrated four-axis machining process, high machining precision and machining difficulty of rub the drum parts, the author analyzes the four-axis machining fixture design of rub the drum, and then puts forward the method of the four-axis machining fixture design of rub the drum, offering the fixture design flow chart. Taking Solidworks software as a platform, the author makes a analysis of 3D digital design and assembly to rub the drum, fixture and clamping mechanism, completes the virtual assembly with rub the drum, fixture and clamping mechanism, realizing the integrated design, making the structure of the clamp more clearly and shortening the product development cycle.


Author(s):  
K. M. Britchford ◽  
J. F. Carrotte ◽  
J. H. Kim ◽  
P. M. Hield

This paper is concerned with the design and performance of an annular S-shaped duct that would be used to connect an LP fan to the core within a gas turbine engine. The desire to minimise engine length means the duct is of relatively short length so that, without novel design, flow separation is likely to occur. Hence the upstream OGV row has been leant tangentially so that it assists in turning the flow within the first bend of the S-shaped duct. In such an ‘integrated’ design, a component of the lift force generated by the OGV row turns the flow radially inward. In this way, the aerodynamic loading on the critical inner wall boundary layer, within the downstream S-shaped duct, is reduced. In addition, by incorporating the blade row within the duct, rather than upstream of it, a further length reduction can also be achieved. The paper outlines the OGV design methodology and presents experimental results that define the aerodynamic performance of the integrated system. The overall system loss is determined mainly by the OGV row, and the subsequent mixing out of the blade wakes prior to the inlet of the core duct. In addition, for the range of conditions tested, the stagnation pressure profile at core duct exit reflects that portion of the OGV exit profile that is captured by the core duct.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lilia Kechiche ◽  
Lamjed Touil ◽  
Bouraoui Ouni

Driven by the importance of energy consumption in system-on-chip design as an evaluation factor, this paper presents a design methodology at the system level to optimize power consumption on ARM-based architecture for real-time video processing. The proposed design flow is based on the interaction between the tool and user optimizations. The tool optimizations are the options and best practices available on the integrated design environment for the Xilinx technology and the target Zynq-7000 architecture. The user methods present methods proposed by the user to optimize power consumption. We used the principles of voltage scaling and frequency scaling techniques for user methods. These two techniques allow energy to be consumed in the proportion of work to be done. The suggested flow is applied on real-time video processing system. The results show power savings for up to 60% with respect to performance and real-time constraints.


2013 ◽  
Vol 64 (6) ◽  
pp. 634-649 ◽  
Author(s):  
Alain Bignon ◽  
André Rossi ◽  
Pascal Berruet

2011 ◽  
Vol 1 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Sandrina Ritzmann ◽  
Annette Kluge ◽  
Vera Hagemann ◽  
Margot Tanner

Recurrent training of cabin crew should include theoretical and practical instruction on safety as well as crew resource management (CRM) issues. The endeavors of Swiss International Air Lines Ltd. and Swiss Aviation Training Ltd. to integrate CRM and safety aspects into a single training module were evaluated. The objective of the integration was to make CRM more tangible and ease acquisition of competencies and transfer of CRM training content to practice by showing its relevance in relation to safety tasks. It was of interest whether the integrated design would be mirrored in a more favorable perception by the trainees as measured with a questionnaire. Participants reacted more positively to the integrated training than to stand-alone CRM training, although the integrated training was judged as being slightly more difficult and less oriented toward instructional design principles. In a range of forced-choice questions, the majority of participants opted for an integrated training format because it was seen as livelier and more interesting and also more practically relevant. For the forthcoming training cycle, a better alignment of training with instructional principles and an even higher degree of training integration by using simulator scenarios are striven for.


Sign in / Sign up

Export Citation Format

Share Document