Deep learning model management for coronary heart disease early warning research

Author(s):  
Yang Peili ◽  
Yin Xuezhen ◽  
Ye Jian ◽  
Yang Lingfeng ◽  
Zhao Hui ◽  
...  
2021 ◽  
Author(s):  
Jannes Münchmeyer ◽  
Dino Bindi ◽  
Ulf Leser ◽  
Frederik Tilmann

<p><span>The estimation of earthquake source parameters, in particular magnitude and location, in real time is one of the key tasks for earthquake early warning and rapid response. In recent years, several publications introduced deep learning approaches for these fast assessment tasks. Deep learning is well suited for these tasks, as it can work directly on waveforms and </span><span>can</span><span> learn features and their relation from data.</span></p><p><span>A drawback of deep learning models is their lack of interpretability, i.e., it is usually unknown what reasoning the network uses. Due to this issue, it is also hard to estimate how the model will handle new data whose properties differ in some aspects from the training set, for example earthquakes in previously seismically quite regions. The discussions of previous studies usually focused on the average performance of models and did not consider this point in any detail.</span></p><p><span>Here we analyze a deep learning model for real time magnitude and location estimation through targeted experiments and a qualitative error analysis. We conduct our analysis on three large scale regional data sets from regions with diverse seismotectonic settings and network properties: Italy and Japan with dense networks </span><span>(station spacing down to 10 km)</span><span> of strong motion sensors, and North Chile with a sparser network </span><span>(station spacing around 40 km) </span><span>of broadband stations. </span></p><p><span>We obtained several key insights. First, the deep learning model does not seem to follow the classical approaches for magnitude and location estimation. For magnitude, one would classically expect the model to estimate attenuation, but the network rather seems to focus its attention on the spectral composition of the waveforms. For location, one would expect a triangulation approach, but our experiments instead show indications of a fingerprinting approach. </span>Second, we can pinpoint the effect of training data size on model performance. For example, a four times larger training set reduces average errors for both magnitude and location prediction by more than half, and reduces the required time for real time assessment by a factor of four. <span>Third, the model fails for events with few similar training examples. For magnitude, this means that the largest event</span><span>s</span><span> are systematically underestimated. For location, events in regions with few events in the training set tend to get mislocated to regions with more training events. </span><span>These characteristics can have severe consequences in downstream tasks like early warning and need to be taken into account for future model development and evaluation.</span></p>


Author(s):  
Surenthiran Krishnan ◽  
Pritheega Magalingam ◽  
Roslina Ibrahim

<span>This paper proposes a new hybrid deep learning model for heart disease prediction using recurrent neural network (RNN) with the combination of multiple gated recurrent units (GRU), long short-term memory (LSTM) and Adam optimizer. This proposed model resulted in an outstanding accuracy of 98.6876% which is the highest in the existing model of RNN. The model was developed in Python 3.7 by integrating RNN in multiple GRU that operates in Keras and Tensorflow as the backend for deep learning process, supported by various Python libraries. The recent existing models using RNN have reached an accuracy of 98.23% and deep neural network (DNN) has reached 98.5%. The common drawbacks of the existing models are low accuracy due to the complex build-up of the neural network, high number of neurons with redundancy in the neural network model and imbalance datasets of Cleveland. Experiments were conducted with various customized model, where results showed that the proposed model using RNN and multiple GRU with synthetic minority oversampling technique (SMOTe) has reached the best performance level. This is the highest accuracy result for RNN using Cleveland datasets and much promising for making an early heart disease prediction for the patients.</span>


2021 ◽  
Vol 15 ◽  
Author(s):  
Liqun Gao ◽  
Yujia Liu ◽  
Hongwu Zhuang ◽  
Haiyang Wang ◽  
Bin Zhou ◽  
...  

With the rapid popularity of agent technology, a public opinion early warning agent has attracted wide attention. Furthermore, a deep learning model can make the agent more automatic and efficient. Therefore, for the agency of a public opinion early warning task, the deep learning model is very suitable for completing tasks such as popularity prediction or emergency outbreak. In this context, improving the ability to automatically analyze and predict the virality of information cascades is one of the tasks that deep learning model approaches address. However, most of the existing studies sought to address this task by analyzing cascade underlying network structure. Recent studies proposed cascade virality prediction for agnostic-networks (without network structure), but did not consider the fusion of more effective features. In this paper, we propose an innovative cascade virus prediction model named CasWarn. It can be quickly deployed in intelligent agents to effectively predict the virality of public opinion information for different industries. Inspired by the agnostic-network model, this model extracts the key features (independent of the underlying network structure) of an information cascade, including dissemination scale, emotional polarity ratio, and semantic evolution. We use two improved neural network frameworks to embed these features, and then apply the classification task to predict the cascade virality. We conduct comprehensive experiments on two large social network datasets. Furthermore, the experimental results prove that CasWarn can make timely and effective cascade virality predictions and verify that each feature model of CasWarn is beneficial to improve performance.


Author(s):  
Sanaa Elyassami ◽  
Achraf Ait Kaddour

<span lang="EN-US">Cardiovascular diseases remain the leading cause of death, taking an estimated 17.9 million lives each year and representing 31% of all global deaths. The patient records including blood reports, cardiac echo reports, and physician’s notes can be used to perform feature analysis and to accurately classify heart disease patients. In this paper, an incremental deep learning model was developed and trained with stochastic gradient descent using feedforward neural networks. The chi-square test and the dropout regularization have been incorporated into the model to improve the generalization capabilities and the performance of the heart disease patients' classification model. The impact of the learning rate and the depth of neural networks on the performance were explored. The hyperbolic tangent, the rectifier linear unit, the Maxout, and the exponential rectifier linear unit were used as activation functions for the hidden and the output layer neurons. To avoid over-optimistic results, the performance of the proposed model was evaluated using balanced accuracy and the overall predictive value in addition to the accuracy, sensitivity, and specificity. The obtained results are promising, and the proposed model can be applied to a larger dataset and used by physicians to accurately classify heart disease patients.</span>


Author(s):  
Mohamed S. Abdalzaher ◽  
M. Sami Soliman ◽  
Sherif M. El-Hady ◽  
Abderrahim Benslimane ◽  
Mohamed Elwekeil

2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Sign in / Sign up

Export Citation Format

Share Document