scholarly journals Heart Disease Prediction using CNN, Deep Learning Model

Author(s):  
Nilam Harkulkar
Author(s):  
Surenthiran Krishnan ◽  
Pritheega Magalingam ◽  
Roslina Ibrahim

<span>This paper proposes a new hybrid deep learning model for heart disease prediction using recurrent neural network (RNN) with the combination of multiple gated recurrent units (GRU), long short-term memory (LSTM) and Adam optimizer. This proposed model resulted in an outstanding accuracy of 98.6876% which is the highest in the existing model of RNN. The model was developed in Python 3.7 by integrating RNN in multiple GRU that operates in Keras and Tensorflow as the backend for deep learning process, supported by various Python libraries. The recent existing models using RNN have reached an accuracy of 98.23% and deep neural network (DNN) has reached 98.5%. The common drawbacks of the existing models are low accuracy due to the complex build-up of the neural network, high number of neurons with redundancy in the neural network model and imbalance datasets of Cleveland. Experiments were conducted with various customized model, where results showed that the proposed model using RNN and multiple GRU with synthetic minority oversampling technique (SMOTe) has reached the best performance level. This is the highest accuracy result for RNN using Cleveland datasets and much promising for making an early heart disease prediction for the patients.</span>


Author(s):  
Sanaa Elyassami ◽  
Achraf Ait Kaddour

<span lang="EN-US">Cardiovascular diseases remain the leading cause of death, taking an estimated 17.9 million lives each year and representing 31% of all global deaths. The patient records including blood reports, cardiac echo reports, and physician’s notes can be used to perform feature analysis and to accurately classify heart disease patients. In this paper, an incremental deep learning model was developed and trained with stochastic gradient descent using feedforward neural networks. The chi-square test and the dropout regularization have been incorporated into the model to improve the generalization capabilities and the performance of the heart disease patients' classification model. The impact of the learning rate and the depth of neural networks on the performance were explored. The hyperbolic tangent, the rectifier linear unit, the Maxout, and the exponential rectifier linear unit were used as activation functions for the hidden and the output layer neurons. To avoid over-optimistic results, the performance of the proposed model was evaluated using balanced accuracy and the overall predictive value in addition to the accuracy, sensitivity, and specificity. The obtained results are promising, and the proposed model can be applied to a larger dataset and used by physicians to accurately classify heart disease patients.</span>


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Sign in / Sign up

Export Citation Format

Share Document