Design and evaluation of lightweight IEEE 802.11p-based TDMA MAC method for road side-to-vehicle communications

Author(s):  
Rashid A. Saeed ◽  
Mahamat A. Abakar ◽  
Aisha A. Hassan ◽  
Othman O. Khalifa
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2956
Author(s):  
Hojin Kang Kim ◽  
Raimundo Becerra ◽  
Sandy Bolufé ◽  
Cesar A. Azurdia-Meza ◽  
Samuel Montejo-Sánchez ◽  
...  

The opportunistic exchange of information between vehicles can significantly contribute to reducing the occurrence of accidents and mitigating their damages. However, in urban environments, especially at intersection scenarios, obstacles such as buildings and walls block the line of sight between the transmitter and receiver, reducing the vehicular communication range and thus harming the performance of road safety applications. Furthermore, the sizes of the surrounding vehicles and weather conditions may affect the communication. This makes communications in urban V2V communication scenarios extremely difficult. Since the late notification of vehicles or incidents can lead to the loss of human lives, this paper focuses on improving urban vehicle-to-vehicle (V2V) communications at intersections by using a transmission scheme able of adapting to the surrounding environment. Therefore, we proposed a neuroevolution of augmenting topologies-based adaptive beamforming scheme to control the radiation pattern of an antenna array and thus mitigate the effects generated by shadowing in urban V2V communication at intersection scenarios. This work considered the IEEE 802.11p standard for the physical layer of the vehicular communication link. The results show that our proposal outperformed the isotropic antenna in terms of the communication range and response time, as well as other traditional machine learning approaches, such as genetic algorithms and mutation strategy-based particle swarm optimization.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Shivam Garg ◽  
Venu Sri Sushma Kuchipudi ◽  
Elizabeth Serena Bentley ◽  
Sunil Kumar

2021 ◽  
Vol 13 (3) ◽  
pp. 68
Author(s):  
Steven Knowles Flanagan ◽  
Zuoyin Tang ◽  
Jianhua He ◽  
Irfan Yusoff

Dedicated Short-Range Communication (DSRC) or IEEE 802.11p/OCB (Out of the Context of a Base-station) is widely considered to be a primary technology for Vehicle-to-Vehicle (V2V) communication, and it is aimed toward increasing the safety of users on the road by sharing information between one another. The requirements of DSRC are to maintain real-time communication with low latency and high reliability. In this paper, we investigate how communication can be used to improve stopping distance performance based on fieldwork results. In addition, we assess the impacts of reduced reliability, in terms of distance independent, distance dependent and density-based consecutive packet losses. A model is developed based on empirical measurements results depending on distance, data rate, and traveling speed. With this model, it is shown that cooperative V2V communications can effectively reduce reaction time and increase safety stop distance, and highlight the importance of high reliability. The obtained results can be further used for the design of cooperative V2V-based driving and safety applications.


Sign in / Sign up

Export Citation Format

Share Document