Low power and low complexity implementation of LPTV interpolation filter

Author(s):  
Sriadibhatla Sridevi ◽  
Ravindra Dhuli ◽  
K. Baboji
2019 ◽  
Vol 17 ◽  
pp. 145-150
Author(s):  
Markus Scholl ◽  
Ralf Wunderlich ◽  
Stefan Heinen

Abstract. This paper presents a highly efficient digital frequency calibration method for ultra-low-power oscillators in wireless communication systems. This calibration method locks the ultra-low-power oscillator's output frequency to the reference clock of the wireless transceiver during its send- and receive-state to achieve frequency stability over process variation and temperature drifts. The introduced calibration scheme offers high jitter immunity and short locking periods overcoming frequency calibration errors for typical ultra-low-power oscillator's by utilizing non-linear segmented feedback levels. In measurements the proposed calibration method improves the frequency stability of an ultra-low-power 32 kHz oscillator from 53 to 10 ppm ∘C−1 over a wide temperature range for temperature drifts of less than 1 ∘C s−1 with an estimated power consumption of 185 nW while coping with relocking periods of 7 ms.


Author(s):  
Woo Wei Kai ◽  
Nabihah Ahmad ◽  
Mohamad Hairol Jabbar

In digital system, the full adders are fundamental circuits that are used for arithmetic operations. Adder operation can be used to implement and perform calculation of the multipliers, subtraction, comparators, and address operation in an Arithmetic Logic Unit (ALU). The subthreshold leakage current increasing as proportional with the scaling down of oxide thickness and transistor in short channel sizes. In this paper, a Gate-diffusion Input (GDI) circuit design technique allow minimization the number of transistor while maintaining low complexity of logic design and low power realization of Variable Body Biasing (VBB) technique to reduce the static power consumption. The Silterra 90nm process design kit (PDK) was used to design 8-bit full adder with VBB technique in full custom methodology by using Synopsys Electronic Design Automation (EDA) tools. The simulation of 8-bit full adder was compared within a conventional bias technique and VBB technique with operating voltage of  supply. The result showed the reduction of VBB technique in term of peak power,  and average power,   compare with conventional bias technique. Moreover, the Power Delay Product (PDP) showed 1.29pJ in VBB technique compare with conventional bias mode 1.67pJ. The area size of 8-Bit full adder was 10μm×23μm.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1671 ◽  
Author(s):  
Alexander Griffiths ◽  
Johannes Herrnsdorf ◽  
Christopher Lowe ◽  
Malcolm Macdonald ◽  
Robert Henderson ◽  
...  

Communicating information at the few photon level typically requires some complexity in the transmitter or receiver in order to operate in the presence of noise. This in turn incurs expense in the necessary spatial volume and power consumption of the system. In this work, we present a self-synchronised free-space optical communications system based on simple, compact and low power consumption semiconductor devices. A temporal encoding method, implemented using a gallium nitride micro-LED source and a silicon single photon avalanche photo-detector (SPAD), demonstrates data transmission at rates up to 100 kb/s for 8.25 pW received power, corresponding to 27 photons per bit. Furthermore, the signals can be decoded in the presence of both constant and modulated background noise at levels significantly exceeding the signal power. The system’s low power consumption and modest electronics requirements are demonstrated by employing it as a communications channel between two nano-satellite simulator systems.


Sign in / Sign up

Export Citation Format

Share Document